Bacterial catalase is important for intracellular survival of the bacteria. This protein of Propionibacterium acnes, one of possible causes of sarcoidosis, induces hypersensitive Th1 immune responses in sarcoidosis patients. We examined catalase expression in cultured P. acnes isolated from 19 sarcoid and 18 control lymph nodes and immunohistochemical localization of the protein in lymph nodes from 43 sarcoidosis and 102 control patients using a novel P. acnes-specific antibody (PAC) that reacts with the catalase protein, together with the previously reported P. acnes-specific PAB and TIG antibodies. High catalase expression of P. acnes cells was found during stationary phase in more isolates from sarcoid than from non-sarcoid lymph nodes and was associated with bacterial survival under HO-induced oxidative stress. In many sarcoid and some control lymph nodes, catalase expression was detected at the outer margins of PAB-reactive Hamazaki-Wesenberg (HW) bodies in sinus macrophages, the same location as catalase expression on the surface of cultured P. acnes and the same distribution as bacterial cell membrane-bound lipoteichoic acid in HW bodies. Some or no catalase expression was detected in sarcoid granulomas with PAB reactivity or in clustered paracortical macrophages packed with many PAB-reactive small-round bodies. HW bodies expressing catalase may be persistent P. acnes in sinus macrophages whereas PAB-reactive small-round bodies with undetectable catalase may be activated P. acnes proliferating in paracortical macrophages. Intracellular proliferation of P. acnes in paracortical macrophages may lead to granuloma formation by this commensal bacterium in sarcoidosis patients with Th1 hypersensitivity to certain P. acnes antigens, including catalase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12026-019-09077-9 | DOI Listing |
Front Microbiol
December 2024
Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia.
Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068, India.
The aim of this study was to decipher the reprogramming of protective machineries and sulfur metabolism, as responses to time-dependent effect of fluoride stress for 10 and 20days in two indica rice (Oryza sativa ) varieties. Unregulated accumulation of fluoride via chloride channels (CLC1 and CLC2) in 10-day-old (cv. Khitish) and 20-day-old (cv.
View Article and Find Full Text PDFActa Parasitol
January 2025
Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey.
Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
Aluminium is a common metallic toxicant that easily penetrates the brain and exerts severe pathological effects e.g., oxidative stress, inflammation and neurodegeneration.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2025
From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.
Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!