Hepatocellular carcinoma (HCC) is associated with some of the highest cancer-associated mortality rates. Histone deacetylase (HDAC) inhibitors anti-HCC activities have been shown to promote Snail-induced metastasis. In the present study, it was shown that BAY 87-2243, a hypoxia-inducible transcription factor-1α inhibitor, could enhance the anti-HCC effects of HDAC inhibitors, including trichostatin A and vorinostat. In addition, BAY 87-2243 plus HDAC inhibitors exhibited synergistic cytotoxicity and induced significant cell death in Hep3B cells. Additionally, BAY 87-2243 combined with HDAC inhibitors-treated Hep3B cells formed fewer and smaller colonies as compared with either the control or single agent-treated cells. Furthermore, glycogen synthase kinase-3β might be involved in the enhanced cell death induced by BAY 87-2243 plus HDAC inhibitors. The present data also indicated that BAY 87-2243 combined with HDAC inhibitors could suppress the migration of Hep3B cells, and BAY 87-2243 could reverse the HDAC inhibitor-induced Snail activation in Hep3B cells. In conclusion, BAY 87-2243 combined with HDAC inhibitors might be an attractive chemotherapy strategy for HCC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507497PMC
http://dx.doi.org/10.3892/etm.2019.7500DOI Listing

Publication Analysis

Top Keywords

bay 87-2243
32
hdac inhibitors
24
hep3b cells
20
87-2243 combined
12
combined hdac
12
bay
8
hepatocellular carcinoma
8
histone deacetylase
8
hdac
8
87-2243 hdac
8

Similar Publications

Article Synopsis
  • Researchers developed a nanomedicine system called HA-P-L, which incorporates a drug that inhibits tumor growth and is designed to effectively cross endothelial layers and deliver treatment to tumor cells.
  • The HA-P-L system maintains its structural integrity during transcytosis, allowing it to release the drug effectively inside tumor cells while avoiding degradation in endothelial cells.
  • Experiments showed that HA-P-L had better cellular uptake and retention in tumors compared to other formulations, leading to improved efficacy in suppressing tumor growth in both high and low permeability models.
View Article and Find Full Text PDF

Background: PIEZO1 works differently in different cancers and at different stages of development. The objective of the current study was to explore the function and underlying mechanism of PIEZO1 in lung adenocarcinoma (LUAD) cells.

Methods: Different LUAD cell lines were treated with PIEZO1 inhibitor (GsMTx4) and agonist (Yoda1), and the expression of PIEZO1 in LUAD cells was detected using real-time quantitative PCR (RT-qPCR) and western blotting.

View Article and Find Full Text PDF

Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity.

Life Sci

January 2024

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China. Electronic address:

Background: Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG).

View Article and Find Full Text PDF

Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI.

View Article and Find Full Text PDF

A number of erythropoiesis stimulants are entering the final stage of clinical trials due to recent scientific progress in hypoxia-regulated erythropoiesis. Considering how erythropoiesis-stimulating compounds enhance the capacity of the organism to transport oxygen, they pose a great risk of being misused as performance enhancers. In this paper, we report the metabolic fate of three popular hypoxia-inducible factor-prolyl hydroxylase Inhibitors (HIF-PHI) compounds, namely, BAY 87-2243, MK-8617, and PT-2385 in equine liver microsomes using Q-Exactive high-resolution mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!