Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Agronomic practices can alter plant susceptibility to diseases and represent a promising alternative to the use of pesticides. Yet, they also alter crop quality and quantity so that the evaluation of their efficacy is not straightforward. Here we couple a compartmental epidemiological model for brown rot diffusion in fruit orchards with a fruit-tree growth model explicitly considering the role of agronomic practices over fruit quality. The new modelling framework permits us to evaluate, in terms of quantity and quality of the fruit production, management scenarios characterized by different levels of regulated deficit irrigation and crop load. Our results suggest that a moderate water stress in the final weeks of fruit development and a moderate fruit load provide effective control on the brown rot spreading, and eventually guarantee monetary returns similar to those that would be obtained in the absence of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560096 | PMC |
http://dx.doi.org/10.1038/s41598-019-44898-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!