Enterovirus genome replication occurs at virus-induced structures derived from cellular membranes and lipids. However, the origin of these replication organelles (ROs) remains uncertain. Ultrastructural evidence of the membrane donor is lacking, suggesting that the sites of its transition into ROs are rare or fleeting. To overcome this challenge, we combined live-cell imaging and serial block-face scanning electron microscopy of whole cells to capture emerging enterovirus ROs. The first foci of fluorescently labeled viral protein correlated with ROs connected to the endoplasmic reticulum (ER) and preceded the appearance of ROs stemming from the -Golgi network. Whole-cell data sets further revealed striking contact regions between ROs and lipid droplets that may represent a route for lipid shuttling to facilitate RO proliferation and genome replication. Our data provide direct evidence that enteroviruses use ER and then Golgi membranes to initiate RO formation, demonstrating the remarkable flexibility with which enteroviruses usurp cellular organelles. Enteroviruses are causative agents of a range of human diseases. The replication of these viruses within cells relies on specialized membranous structures termed replication organelles (ROs) that form during infection but whose origin remains elusive. To capture the emergence of enterovirus ROs, we use correlative light and serial block-face scanning electron microscopy, a powerful method to pinpoint rare events in their whole-cell ultrastructural context. RO biogenesis was found to occur first at ER and then at Golgi membranes. Extensive contacts were found between early ROs and lipid droplets (LDs), which likely serve to provide LD-derived lipids required for replication. Together, these data establish the dual origin of enterovirus ROs and the chronology of their biogenesis at different supporting cellular membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561026PMC
http://dx.doi.org/10.1128/mBio.00951-19DOI Listing

Publication Analysis

Top Keywords

replication organelles
12
electron microscopy
12
enterovirus ros
12
ros
10
genome replication
8
cellular membranes
8
organelles ros
8
serial block-face
8
block-face scanning
8
scanning electron
8

Similar Publications

Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

COA5 has an essential role in the early stage of mitochondrial complex IV assembly.

Life Sci Alliance

March 2025

https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.

View Article and Find Full Text PDF

Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection .

Front Cell Infect Microbiol

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.

View Article and Find Full Text PDF

Ubiquitin-like modifier-activating enzyme 1 interacts with Zika virus NS5 and promotes viral replication in the infected cell.

J Gen Virol

January 2025

Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain.

Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!