Ixodes scapularis is responsible for the transmission of a variety of pathogens in North America, including Borrelia burgdorferi sensu stricto, Anaplasma phagocytophilum and Babesia microti. Songbirds have previously been described as agents of tick dispersal, and a combination of empirical data and modeling efforts have implicated songbirds in the range expansion of I. scapularis northward into Canada during spring bird migration. The role of fall bird migration has received comparatively less attention, particularly at a continental scale. The aim of the current research was to use a novel individual-based modeling approach (IBM) to investigate the role of southward migrating songbirds in the dispersal of I. scapularis within the continental United States. The IBM used in this research explicitly models dispersal by two extensively studied migrating songbird species, wood thrush Hylocichla mustelina and ovenbird Seiurus aurocapillus. Our IBM predicts the annual dispersal of more than four million ticks by H. mustelina and S. aurocapillus, notably into areas as far west as the Dakotas, and as far south as Central Alabama. Predicted dispersal locations include areas where the southern phenotype of I. scapularis dominates, suggestive of a possible mechanism for previously described unidirectional gene flow from north to south. In addition, the model demonstrates that three species-specific songbird traits - breeding range, migration timing, and propensity for tick attachment - each play a major role in the relative magnitude of tick dispersal by different songbird species. The pattern of I. scapularis dispersal predicted by this model suggests that migrating songbirds may have contributed to the range expansion of the tick historically, and may continue to do so presently and into the future, particularly as climate changes the geographic areas that are suitable for I. scapularis. Ultimately, widespread tick dispersal by migrating songbirds likely increases the human risk of Lyme disease and other tick-borne diseases in the United States.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ttbdis.2019.05.012 | DOI Listing |
Acta Naturae
January 2024
Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russian Federation.
Analytical electron microscopy techniques, including energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), are employed in materials science and biology to visualize and chemically map diverse elements. This review presents cases of successful identification of nucleic acids in cells and in DNA- and RNA-containing viruses that use the chemical element phosphorus as a marker.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.
Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Entomology, Washington State University, 100 Dairy Road, Pullman, WA, USA.
Background: Estimates of tick abundance and distribution are used to determine the risk of tick-host contact. Tick surveys provide estimates of distributions and relative abundance for species that remain stationary and wait for passing hosts (i.e.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Infectious Diseases Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
Migratory birds reach Europe from sub-Saharan Africa, and some avian species may harbor and transport infected ectoparasites, mainly ticks, native to the territories of departure. In 2022, a project focused on identifying the introduction of pathogens in Italy from Africa via migratory birds represented an important opportunity to investigate this particular route of tick dispersal. Among ticks collected from migratory birds on the island of Ventotene, Latium Region, we found one larva of a soft tick on a common whitethroat (Curruca communis) that was morphologically and molecularly identified to the species level as Argas (Persicargas) persicus (Oken 1818).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!