Background: The astroglial connexins Cx30 and Cx43 contribute to many important CNS functions including cognitive behaviour, motoric capacity and regulation of the sleep-wake cycle. The sleep wake cycle, is controlled by the circadian system. The central circadian rhythm generator resides in the suprachiasmatic nucleus (SCN). SCN neurons are tightly coupled in order to generate a coherent circadian rhythm. The SCN receives excitatory glutamatergic input from the retina which mediates entrainment of the circadian system to the environmental light-dark cycle. Connexins play an important role in electric coupling of SCN neurons and astrocytic-neuronal signalling that regulates rhythmic SCN neuronal activity. However, little is known about the regulation of Cx30 and Cx43 expression in the SCN, and the role of these connexins in light entrainment of the circadian system and in circadian rhythm generation.

Methods: We analysed time-of-day dependent as well as circadian expression of Cx30 and Cx43 mRNA and protein in the mouse SCN by means of qPCR and immunohistochemistry. Moreover, we analysed rhythmic spontaneous locomotor activity in mice with a targeted deletion of Cx30 and astrocyte specific deletion of Cx43 (DKO) in different light regimes by means of on-cage infrared detectors.

Results: Fluctuation of Cx30 protein expression is strongly dependent on the light-dark cycle whereas fluctuation of Cx43 protein expression persisted in constant darkness. DKO mice entrained to the light-dark cycle. However, re-entrainment after a phase delay was slightly impaired in DKO mice. Surprisingly, DKO mice were more resilient to chronodisruption.

Conclusion: Circadian fluctuation of Cx30 and Cx43 protein expression in the SCN is differently regulated. Cx30 and astroglial Cx43 play a role in rhythm stability and re-entrainment under challenging conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560876PMC
http://dx.doi.org/10.1186/s12964-019-0370-2DOI Listing

Publication Analysis

Top Keywords

cx30 cx43
16
circadian system
12
circadian rhythm
12
light-dark cycle
12
protein expression
12
dko mice
12
time-of-day dependent
8
suprachiasmatic nucleus
8
locomotor activity
8
circadian
8

Similar Publications

The gap connexins of astrocytes play a crucial role in facilitating neuronal coordination and maintaining the homeostasis of the central nervous system. Cx30/Cx43 are the main proteins constituting these gap junctions, and the glutamate transporter EAAT1 associates with nerve injury. However, the role and mechanism underlying the changes of astrocytic connexins and EAAT1 during cerebral ischemia-reperfusion injury remain unclear.

View Article and Find Full Text PDF

Regulation of the gap junction interplay during postnatal development in the rat epididymis.

Cell Tissue Res

December 2024

Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 531 Boul Des Prairies, Laval, Québec, H7V 1B7, Canada.

Article Synopsis
  • The study examines changes in gap junction protein expression in the rat epididymis during postnatal development, revealing decreased levels of Gjb2 (Cx26) and increased levels of other connexins (Cx32, Cx30.3, and Cx31.1).
  • The research aims to identify mechanisms behind these expression changes, indicating that decreased Gjb2 does not trigger compensatory mechanisms in principal cells and noting hormone interactions.
  • Findings show that androgens, particularly testosterone, and glucocorticoids like dexamethasone significantly influence the expression of these connexins, with orchidectomy revealing hormonal influence on GJB2 and GJB1 levels in the epididymis.
View Article and Find Full Text PDF

Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications.

Biochim Biophys Acta Rev Cancer

September 2024

Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain. Electronic address:

Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs), particularly adipose-derived MSCs (AD-MSCs), are being studied for their potential to differentiate into cardiac pacemaker-like cells (CPLCs) through the upregulation of the TBX3 transcription factor and the inhibition of the nodal signal pathway.
  • TBX3 expression significantly increased in treated groups, resulting in higher expression of pacemaker-specific markers (like Cx30 and HCN genes) compared to control groups, with some gap junction genes showing lower expression.
  • The study concludes that manipulating TBX3 and the nodal pathway effectively promotes the transformation of AD-MSCs into CPLCs, suggesting a promising approach for cardiac treatments.
View Article and Find Full Text PDF

GJB2 c.35del variant up-regulates GJA1 gene expression and affects differentiation of human stem cells.

Genet Mol Biol

April 2024

Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil.

Pathogenic DNA alterations in GJB2 are present in nearly half of non-syndromic hearing loss cases with autosomal recessive inheritance. The most frequent variant in GJB2 causing non-syndromic hearing loss is the frameshifting c.35del.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!