In many species, courtship displays are reliable signals of male quality, and current hypotheses suggest that these displays allow females to choose males with high cellular function. Environmental stressors generate excess reactive oxygen species (ROS) that impair cellular function, and thus antioxidant pathways that remove ROS are probably critical for preserving complex sexual behaviours. Here, we test the hypothesis that enhanced antioxidant activity in mitochondria preserves mating performance following oxidative stress. Using a transgenic approach, we directly manipulated mitochondrial antioxidant activity in the Caribbean fruit fly, Anastrepha suspensa, a lek-mating species with elaborate sexual displays and intense sexual selection that is also a model for sterile insect technique programmes. We generated seven transgenic lines that overexpress mitochondrial superoxide dismutase (MnSOD). Radiation is a severe oxidative stressor used to induce sterility for sterile insect programmes. After radiation treatment, two lines with intermediate MnSOD overexpression showed enhanced mating performance relative to wild-type males. These improvements in mating corresponded with reduced oxidative damage to lipids, demonstrating that MnSOD overexpression protects flies from oxidative stress at the cellular level. For lines with improved mating performance, overexpression also preserved locomotor activity, as indicated by a laboratory climbing assay. Our results show a clear link between oxidative stress, antioxidant capacity and male performance. Our work has implications for fundamentally understanding the role of antioxidants in sexual selection, and shows promise for using transgenic approaches to enhance the field performance of insects released for area-wide pest management strategies and improving performance of biological control agents in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571480PMC
http://dx.doi.org/10.1098/rspb.2019.0531DOI Listing

Publication Analysis

Top Keywords

mating performance
16
oxidative stress
12
fruit fly
8
cellular function
8
antioxidant activity
8
sexual selection
8
sterile insect
8
mnsod overexpression
8
performance
7
mating
5

Similar Publications

The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.

View Article and Find Full Text PDF

The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.

View Article and Find Full Text PDF

Composite crosses result from the mating of two or more distinct cattle breeds. Breeding performance may improve rapidly using a well-organized composite breeding system and a clear selection index. The KiwiCross is a popular composite cross in New Zealand, combining Holstein-Friesian (high milk production) and Jersey (high milk fat).

View Article and Find Full Text PDF

Guanidinoacetic acid (GAA), a precursor of creatine, has a recognized effect on ruminant performance when used as a dietary supplement. However, its impact on reproductive response remains to be elucidated. Therefore, this study aimed to contribute initially to this area by supplementing the diets of ewes with a high dose of GAA, evaluating its effects on reproductive response.

View Article and Find Full Text PDF

Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria.

Biomedicines

January 2025

Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia.

Plasmid-mediated resistance is a significant mechanism that contributes to the gradual decrease in the efficacy of antibiotics from various classes, including carbapenems. The aim of this study is to investigate the frequency of transfer of carbapenemase-encoding plasmids from to and . Matings were performed on agar with subsequent isolation of transconjugant, recipient, and donor colonies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!