pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud.

Int J Environ Res Public Health

Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.

Published: June 2019

This study analyzes the leaching behavior of elements from red mud (bauxite residue) at pH values ranging from 2 to 13. The leaching characteristics of metals and contaminated anions in five red mud samples produced by Bayer and combined processes were analyzed using the batch leaching technique following the US Environmental Protection Agency (USEPA) Method 1313. In addition, the geochemical model of MINTEQ 3.1 was used to identify the leaching mechanisms of metals. The results showed that Ca, Mg, and Ba follow the cationic leaching pattern. Al, As, and Cr show an amphoteric leaching pattern. The leaching of Cl is unaffected by the pH. The maximum leaching concentration of the proprietary elements occurs under extremely acidic conditions (pH = 2), except for As. The leaching concentration of F reaches 1.4-27.0 mg/L in natural pH conditions (i.e., no acid or base addition). At the same pH level, the leaching concentrations of Pb, As, Cr, and Cu are generally higher from red mud produced by the combined process than that those of red mud from the Bayer process. The leaching concentration of these elements is not strongly related to the total elemental concentration in the red mud. Geochemical modeling analysis indicates that the leaching of metal elements, including Al, Ca, Fe, Cr, Cu, Pb, Mg, Ba, and Mn, in red mud are controlled by solubility. The leaching of these elements depended on the dissolution/precipitation of their (hydr)oxides, carbonate, or sulfate solids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603915PMC
http://dx.doi.org/10.3390/ijerph16112046DOI Listing

Publication Analysis

Top Keywords

red mud
28
leaching
13
leaching concentration
12
leaching characteristics
8
elements red
8
leaching pattern
8
red
7
mud
7
elements
6
ph-dependent leaching
4

Similar Publications

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Removal, conversion and utilization technologies of alkali components in bayer red mud.

J Environ Manage

December 2024

China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.

Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.

View Article and Find Full Text PDF

The high concentration of metal compounds found in red mud (RM) can serve as cost-effective raw materials for photo Fenton catalysts in the treatment of organic dye wastewater. In this study, RM was modified with bagasse using a hydrothermal method to prepare a photo-Fenton catalyst. The degradation efficiency of Rhodamine (RhB) solution under different conditions was evaluated.

View Article and Find Full Text PDF

Incidence, Risk Factors, and Outcomes of BK Hemorrhagic Cystitis in Hematopoietic Stem Cell Transplantation From HLA-Matched and Haploidentical Donors With Post-Transplant Cyclophosphamide.

Transplant Cell Ther

December 2024

Hematology Department, Hospital Universitari i Politècnic La Fe, València, Spain; Hematology Research Group, Institut d'Investigació Sanitària La Fe, València, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain; Medicine Department, Universitat de València, València, Spain.

BK hemorrhagic cystitis (BK-HC) is a common complication following hematopoietic stem cell transplantation (HSCT), particularly when posttransplant cyclophosphamide (PTCy) is used as graft-versus-host disease (GVHD) prophylaxis. However, comparative studies of BK-HC incidence in matched sibling donors (MSD) and unrelated donors (MUD) often include small haploidentical (HAPLO) donor cohorts and usually lack detailed information on disease evolution, coinfections, management and impact on outcomes. This study aimed to evaluate the incidence, risk factors, and outcomes in patients with hematologic malignancies undergoing HSCT from MSD, MUD, HAPLO donors using PTCy as GVHD prophylaxis.

View Article and Find Full Text PDF

Sawdust is the cutting tailings produced during stone processing, which is difficult to deal with and has a huge stock. Therefore, it is particularly important to enhance the comprehensive utilization of sawdust. The aim of this study was to synergistically utilize sawdust with other industrial wastes (fly ash, silt, and red mud), add cement as a curing agent to prepare modified sawdust, and analyze its performance through an unconfined compressive strength test, dry and wet cycle tests, and SEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!