A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiac Rhythm and Molecular Docking Studies of Ion Channel Ligands with Cardiotoxicity in Zebrafish. | LitMetric

Safety is one of the most important and critical issues in drug development. Many drugs were abandoned in clinical trials and retracted from the market because of unknown side effects. Cardiotoxicity is one of the most common reasons for drug retraction due to its potential side effects, i.e., inducing either tachycardia, bradycardia or arrhythmia. The zebrafish model could be used to screen drug libraries with potential cardiotoxicity in a high-throughput manner. In addition, the fundamental principles of replacement, reduction, and refinement of laboratory animal usage, 3R, could be achieved by using zebrafish as an alternative to animal models. In this study, we used a simple ImageJ-based method to evaluate and screen 70 ion channel ligands and successfully identify six compounds with strong cardiotoxicity in vivo. Next, we conducted an in silico-based molecular docking simulation to elucidate five identified compounds that might interact with domain III or domain IV of the L-type calcium channel (LTCC), a known pharmaceutically important target for arrhythmia. In conclusion, in this study, we provide a web lab and dry lab combinatorial approach to perform in vivo cardiotoxicity drug screening and in silico mechanistic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627553PMC
http://dx.doi.org/10.3390/cells8060566DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
ion channel
8
channel ligands
8
side effects
8
cardiotoxicity
5
cardiac rhythm
4
rhythm molecular
4
docking studies
4
studies ion
4
ligands cardiotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!