Inverted organic light-emitting diodes (iOLEDs) without the use of alkali metals have attracted extensive attention owing to the demand for the realization of flexible OLEDs that do not require stringent encapsulation. In this paper, we discuss the correlation between the characteristics of iOLEDs and the energy-level alignment at cathode/organic layer interfaces examined by ultraviolet photoelectron spectroscopy. Two similar electron-transporting materials having different orbital energies, 2,8-bis(diphenylphosphoryl)dibenzo[ b, d]thiophene (PPT) and 2,8-bis(diphenylphosphoryl)dibenzo[ b, d]thiophene sulfone (PPT-S), are inserted between the cathode/polyethyleneimine and the emitting layer in the iOLED. The iOLED employing PPT-S exhibits a lower driving voltage and a higher efficiency than that employing PPT, which is consistent with the orbital energies of the two molecules. Although the stabilities of these two molecules are expected to be similar, the iOLED employing PPT-S exhibits an operational lifetime that is more than 100 times longer than that of the iOLED employing PPT. It was found that the difference in operational lifetime is caused by the difference in the energy-level alignment at the cathode/organic layer interfaces. Our results are expected to promote the development of promising materials and device configurations for fabricating efficient and operationally stable iOLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b03895 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Huaqiao University College of Materials Science and Engineering, No.668 Jimei Avenue, Xiamen, Fujian, 361021, Xiamen, CHINA.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.
View Article and Find Full Text PDFNat Commun
December 2024
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.
Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.
View Article and Find Full Text PDFAnal Chem
December 2024
Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, yet it faces challenges with certain probe molecules exhibiting weak or inactive signals, limiting their applicability. In a recent study, we investigated this phenomenon using a set of four probe molecules─chloramphenicol (CAP), 4-nitrophenol (4-NP), amoxicillin (AMX), and furazolidone (FZD)─deposited on Ag-based nanostructured SERS substrates. Despite being measured under identical conditions, CAP and 4-NP exhibited SERS activity, while AMX and FZD did not.
View Article and Find Full Text PDFNanoscale
December 2024
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Molybdenum disulfide (MoS) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS flakes and elucidate layer-number-dependent charge transfer behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!