An expedited synthesis of -hydroxamic acid aminocarboxylic acid (-HXA) compounds has been developed. These monomeric ligands are relevant to the synthesis of metal-macrocycle complexes using metal-templated synthesis (MTS), and the downstream production of apomacrocycles. Macrocycles can display useful drug properties and be used as ligands for radiometals in medical imaging applications, which supports methodological advances in accessing this class of molecule. Six -HXA ligands were prepared that contained methylene groups, ether atoms, or thioether atoms in different regions of the monomer (-). MTS using a 1:2 Fe(III)/ligand ratio furnished six dimeric hydroxamic acid macrocycles complexed with Fe(III) (-). The corresponding apomacrocycles (-) were produced upon treatment with diethylenetriaminepentaacetic acid (DTPA). Constitutional isomers of the apomacrocycles that contained one ether oxygen atom in the diamine-containing () or dicarboxylic acid-containing () region were well resolved by reverse-phase high-performance liquid chromatography (RP-HPLC). Density functional theory calculations were used to compute the structures and solvated molecular properties of - and showed that the orientation of the amide bonds relative to the pseudo- axis was close to parallel in , , and - but tended toward perpendicular in . This conformational constraint in reduced the polarity compared with , consistent with the experimental trend in polarity observed using RP-HPLC. The improved synthesis of -HXA ligands allows expanded structural diversity in MTS-derived macrocycles and the ability to modulate macrocycle properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b00878DOI Listing

Publication Analysis

Top Keywords

-hydroxamic acid
8
metal-templated synthesis
8
-hxa ligands
8
synthesis
5
acid monomers
4
monomers assembly
4
assembly suite
4
suite non-native
4
non-native dimeric
4
dimeric macrocyclic
4

Similar Publications

Background: Iron is implicated in Alzheimer's disease (AD) and is bound to β-amyloid (Ab) plaques. AD brains have increased 4-hydroxynonenal (HNE) adducts, a lipid decomposition product bound to proteins originating from iron mediated lipid peroxidation. Increased brain iron may result from cerebral microbleeds which by nature are rich sources of iron.

View Article and Find Full Text PDF

Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.

View Article and Find Full Text PDF

Objectives: To investigate the effects of suberoylanilide hydroxamic acid (SAHA) on lung fibroblast activation and to examine the role of p66Shc in this process.

Methods: An in vitro pulmonary fibrosis model was established using transforming growth factor-β (TGF-β)-induced MRC-5 lung fibroblasts. The proliferation and migration capacities of MRC-5 cells, along with the expression of fibrosis-related genes, were assessed following treatment with SAHA and/or silence of p66Shc.

View Article and Find Full Text PDF

Semisynthesis of Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity.

J Nat Prod

January 2025

Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.

Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.

View Article and Find Full Text PDF

In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect.

Pharmaceuticals (Basel)

November 2024

Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania.

Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!