Diffuse large B cell lymphomas (DLBCLs) are genetically heterogeneous and highly proliferative neoplasms derived from germinal center (GC) B cells. Here, we show that DLBCLs are dependent on mitochondrial lysine deacetylase SIRT3 for proliferation, survival, self-renewal, and tumor growth in vivo regardless of disease subtype and genetics. SIRT3 knockout attenuated B cell lymphomagenesis in VavP-Bcl2 mice without affecting normal GC formation. Mechanistically, SIRT3 depletion impaired glutamine flux to the TCA cycle via glutamate dehydrogenase and reduction in acetyl-CoA pools, which in turn induce autophagy and cell death. We developed a mitochondrial-targeted class I sirtuin inhibitor, YC8-02, which phenocopied the effects of SIRT3 depletion and killed DLBCL cells. SIRT3 is thus a metabolic non-oncogene addiction and therapeutic target for DLBCLs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534582PMC
http://dx.doi.org/10.1016/j.ccell.2019.05.002DOI Listing

Publication Analysis

Top Keywords

non-oncogene addiction
8
sirt3 depletion
8
sirt3
6
addiction sirt3
4
sirt3 plays
4
plays critical
4
critical role
4
role lymphomagenesis
4
lymphomagenesis diffuse
4
diffuse large
4

Similar Publications

Background: Immune checkpoint inhibitors (ICIs), either alone or in combination with platinum-based chemotherapy, are effective in the first-line treatment of metastatic, non-oncogene-addicted, non-small cell lung cancer (NSCLC). However, when NSCLC patients progress, the efficacy of available treatment options is limited.

Methods: We undertook a meta-analysis that compared combination regimens with the current standard of care.

View Article and Find Full Text PDF

Pembrolizumab (an anti-PD1 antibody) alone or combined with chemotherapy represented the standard of care for advanced non-oncogene addicted non-small cell lung cancer (NSCLC) patients. These therapies induced early modifications of the immune response impacting the clinical outcome. Identifying early changes in the immune system was critical to directing the therapeutic choice and improving the clinical outcome.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Background: The upfront treatment of non-oncogene-addicted NSCLC relies on immunotherapy alone (ICI) or in combination with chemotherapy (CT-ICI). Genomic aberrations such as KRAS, TP53, KEAP1, SMARCA4, or STK11 may impact survival outcomes.

Methods: We performed an observational study of 145 patients treated with first-line IO or CT-ICI for advanced non-squamous (nsq) NSCLC at our institution tested with an extensive lab-developed NGS panel.

View Article and Find Full Text PDF

: Single-agent immune checkpoint inhibitor (IO) therapy is the standard for non-oncogene-addicted advanced non-small cell lung cancer (aNSCLC) with PD-L1 tumor proportion score ≥ 50%. Smoking-induced harm generates high tumor mutation burden (H-TMB) in smoking patients (S-pts), while never-smoking patients (NS-pts) typically have low TMB (L-TMB) and are unresponsive to IO. However, the molecular characterization of NS-pts with H-TMB remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!