Electrocaloric refrigeration utilizing ferroelectrics has recently gained tremendous attention because of the urgent demand for solid-state cooling devices. However, the low room-temperature electrocaloric effect and narrow operation temperature window hinder the implementation of lead-free ferroelectrics in high-efficiency cooling applications. In this work, chemical engineering and thick-film architecture design strategies were integrated into a BaTiO-based system to resolve this challenge. Novel environmental-friendly Ba(ZrTi)O-Ba(SnTi)O (BZT-BST) bilayer films of ∼13 μm in single-layer thickness were prepared by the tape casting process. A giant adiabatic temperature change, Δ T ∼ 5.2 K, and a large isothermal entropy change, Δ S ∼ 6.9 J kg K, were simultaneously achieved at room temperature based on the direct measurements, which are much higher than those reported previously in many lead-free ferroelectrics. Moreover, the BZT-BST thick films exhibited a remarkably widened operation temperature range from about 10 to 60 °C. These outstanding properties were mainly attributed to the multiphase coexistence near room temperature, relaxor ferroelectric characteristics, and improved electric-field endurance of the bilayer thick films. This work provides a guideline for the development of environment-friendly electronic materials with both ultrahigh and stable electrocaloric performance and will broaden the application areas of lead-free ferroelectrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b06279 | DOI Listing |
Food Chem
January 2025
Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye. Electronic address:
This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Recently, ultrafast laser direct writing has become an effective method for preparing flexible films with micro-nano structures. However, effective control of laser parameters to obtain acceptable micro-nano structures and the effect of micro-nano structure sizes on function of the film remain challenges. Additionally, flexible films with high X-band transmittance are urgently required in aerospace and other fields.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!