Precise neural sequences are associated with the production of well-learned skilled behaviors. Yet, how neural sequences arise in the brain remains unclear. In songbirds, premotor projection neurons in the cortical song nucleus HVC are necessary for producing learned song and exhibit precise sequential activity during singing. Using cell-type specific calcium imaging we identify populations of HVC premotor neurons associated with the beginning and ending of singing-related neural sequences. We characterize neurons that bookend singing-related sequences and neuronal populations that transition from sparse preparatory activity prior to song to precise neural sequences during singing. Recordings from downstream premotor neurons or the respiratory system suggest that pre-song activity may be involved in motor preparation to sing. These findings reveal population mechanisms associated with moving from non-vocal to vocal behavioral states and suggest that precise neural sequences begin and end as part of orchestrated activity across functionally diverse populations of cortical premotor neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592689 | PMC |
http://dx.doi.org/10.7554/eLife.43732 | DOI Listing |
Front Genet
January 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, China.
Cysteine S-carboxyethylation, a novel post-translational modification (PTM), plays a critical role in the pathogenesis of autoimmune diseases, particularly ankylosing spondylitis. Accurate identification of S-carboxyethylation modification sites is essential for elucidating their functional mechanisms. Unfortunately, there are currently no computational tools that can accurately predict these sites, posing a significant challenge to this area of research.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, USA.
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
Clathrin proteins, key elements of the vesicle coat, play a crucial role in various cellular processes, including neural function, signal transduction, and endocytosis. Disruptions in clathrin protein functions have been associated with a wide range of diseases, such as Alzheimer's, neurodegeneration, viral infection, and cancer. Therefore, correctly identifying clathrin protein functions is critical to unravel the mechanism of these fatal diseases and designing drug targets.
View Article and Find Full Text PDFSci Rep
January 2025
Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
Bisphenol A (BPA), an endocrine-disrupting chemical, is increasingly linked to the pathogenesis of autism spectrum disorder (ASD). This study investigates the effects of prenatal BPA exposure on neural stem cells (NSCs) from the hippocampi of rat offspring, a brain region critical for neurodevelopment and implicated in ASD. Pregnant rats were administered with BPA or vehicle control once daily via oral gavage from gestational day 1 until parturition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!