A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of the role of respiratory syncytial virus surface glycoproteins F and G on viral stability and replication: implications for future vaccine design. | LitMetric

Respiratory syncytial virus (RSV) remains a leading cause of infant mortality worldwide and exhaustive international efforts are underway to develop a vaccine. However, vaccine development has been hindered by a legacy of vaccine-enhanced disease, poor viral immunogenicity in infants, and genetic and physical instabilities. Natural infection with RSV does not prime for enhanced disease encouraging development of live-attenuated RSV vaccines for infants; however, physical instabilities of RSV may limit vaccine development. The role of RSV strain-specific differences on viral physical stability remains unclear. We have previously demonstrated that the RSV fusion (F) surface glycoprotein is responsible for mediating significant differences in thermostability between strains A2 and A2-line19F. In this study, we performed a more comprehensive analysis to characterize the replication and physical stability of recombinant RSV A and B strains that differed only in viral attachment (G) and/or F surface glycoprotein expression. We observed significant differences in thermal stability, syncytia size, pre-fusion F incorporation and viral growth kinetics in vitro, but limited variations to pH and freeze-thaw inactivation among several tested strains. Consistent with earlier studies, A2-line19F showed significantly enhanced thermal stability over A2, but also restricted growth kinetics in both HEp2 and Vero cells. As expected, no significant differences in susceptibility to UV inactivation were observed. These studies provide the first analysis of the physical stability of multiple strains of RSV, establish a key virus strain associated with enhanced thermal stability compared to conventional lab strain A2, and further support the pivotal role RSV F plays in virus stability.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.001287DOI Listing

Publication Analysis

Top Keywords

physical stability
12
thermal stability
12
rsv
9
respiratory syncytial
8
syncytial virus
8
stability
8
vaccine development
8
physical instabilities
8
role rsv
8
surface glycoprotein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!