Nanostructures were built at the solid/liquid interface by self-assembly and/or coordination bonds. Metalloporphyrins bearing two external coordination sites and long alkyl chains allowed the self-assembly of the compounds on highly oriented pyrolitic graphite. After addition of a metal ion, long transition-metal linked porphyrin nanoribbons were obtained and visualized by scanning tunneling microscopy. In these porphyrin ribbons electronic delocalization is possible through the d orbitals of the connecting metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b02145DOI Listing

Publication Analysis

Top Keywords

porphyrin nanoribbons
8
highly oriented
8
coordination-driven construction
4
construction porphyrin
4
nanoribbons highly
4
oriented pyrolytic
4
pyrolytic graphite
4
graphite hopg/liquid
4
hopg/liquid interface
4
interface nanostructures
4

Similar Publications

Article Synopsis
  • The study focuses on developing safe and cost-effective aqueous electrolytes for improving electrochemical performance, specifically targeting lower salt concentrations and wider electrochemical stable potential windows.
  • The authors synthesize porphyrin-based covalent organic polymers (COPs) using a simple method, enhancing their conductivity by wrapping them around multiwall carbon nanotubes.
  • Among the different polymers, MWCNT@PTZ-COP shows the best performance in electrochemical applications, achieving high specific capacitance, energy density, and exceptional stability after numerous charge-discharge cycles.
View Article and Find Full Text PDF

Hemozoin (HZ, a malarial pigment) is an insoluble crystalline byproduct formed during the intraerythrocytic breakdown of hemoglobin by some blood-feeding parasites, such as . It consists of polymerized iron-porphyrin molecular units linked by carboxylic bonds. Due to the rigid molecular structure, studying the electron transfer activity of HZ is challenging.

View Article and Find Full Text PDF

On-surface synthesis of functional molecular structures provides a route to the fabrication of materials tailored to exhibit bespoke catalytic, (opto)electronic, and magnetic properties. The fabrication of graphene nanoribbons via on-surface synthesis, where reactive precursor molecules are combined to form extended polymeric structures, provides quasi-1D graphitic wires that can be doped by tuning the properties/composition of the precursor molecules. Here, we combine the atomic precision of solution-phase synthetic chemistry with on-surface protocols to enable reaction steps that cannot yet be achieved in solution.

View Article and Find Full Text PDF

High Charge Carrier Mobility in Porphyrin Nanoribbons.

Angew Chem Int Ed Engl

November 2024

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK.

Polydisperse edge-fused nickel(II) porphyrin nanoribbons have been synthesized by Yamamoto coupling followed by gold(III)-mediated fusion, with average degrees of polymerization of up to 37 repeat units (length 31 nm). Time-resolved optical-pump terahertz spectroscopy measurements indicate that photo-generated charge carriers have dc mobilities of up to 205 cm V s in these nanoribbons, exceeding the values previously reported for most other types of nanoribbon or π-conjugated polymer.

View Article and Find Full Text PDF

Electronic and magnetic properties of porphyrin nanoribbons with chelated metals.

Phys Chem Chem Phys

October 2024

Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.

Advances in surface-assisted synthesis routes now allow for precise control in the preparation and modification of low-dimensional structures. The choice of molecular precursors plays a fundamental role in these processes since the structural details and properties of the resulting nanostructures directly depend on the molecular block used. From this perspective, units based on porphyrins have proven to be promising candidates for the construction of nanosystems with nontrivial geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!