Involvement of carbohydrates in long-term light-dependent systemic regulation on photosynthesis of maize under light heterogeneity.

Plant Signal Behav

b Key Laboratory of Crop Eco-physiology and Farming System in Southwest China , Ministry of Agriculture , Chengdu , China.

Published: May 2020

It is widely recognized that different parts of a plant can communicate with each other via light-dependent long-distance signaling under heterogeneous light conditions. However, the mechanism of such systemic signaling has not been revealed yet. Our studies on different species suggest the involvement of carbohydrates in light-dependent systemic regulation between different parts of a plant under both short- and long-term light heterogeneity. Leaves exposed to better light condition perform enhanced photosynthetic capacity, and act to compensate for the decline in photosynthesis of other leaves under bad light condition within the same plant. This kind of compensatory photosynthesis has a close relationship to the distribution of carbohydrates, and can be regarded as an integrative strategy to make efficient use of sunlight at the whole-plant level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619968PMC
http://dx.doi.org/10.1080/15592324.2019.1629266DOI Listing

Publication Analysis

Top Keywords

involvement carbohydrates
8
light-dependent systemic
8
systemic regulation
8
light heterogeneity
8
parts plant
8
light condition
8
light
5
carbohydrates long-term
4
long-term light-dependent
4
regulation photosynthesis
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation.

FASEB J

January 2025

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.

Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties.

View Article and Find Full Text PDF

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!