AI Article Synopsis

Article Abstract

Designing highly active oxygen reduction reaction (ORR) catalysts is crucial to boost the fuel cell economy. Previous research has mainly focused on Pt-based alloy catalysts in which surface Pt is the solely active site and the activity improvement was challenged by the discovered scaling relationship. Herein we report a new concept of utilizing dual active sites for the ORR and demonstrate its effectiveness by synthesizing a SnO /Pt-Cu-Ni heterojunctioned catalyst. A maximum of 40% enhancement in the apparent specific activity, which corresponds to 10-fold enhancement on interface sites, is measured compared with pure Pt-Cu-Ni. Detailed investigations suggest an altered dual-site cascade mechanism wherein the first two steps occur on SnO sites and the remaining steps occur on adjacent Pt sites, allowing a significant decrease in the energy barrier. This study with the suggested dual-site cascade mechanism shows the potential to overcome the ORR energy barrier bottleneck to develop highly active catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b02286DOI Listing

Publication Analysis

Top Keywords

dual-site cascade
12
oxygen reduction
8
sno /pt-cu-ni
8
highly active
8
cascade mechanism
8
steps occur
8
energy barrier
8
cascade oxygen
4
reduction mechanism
4
mechanism sno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!