A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of a Novel Allosteric Modulator of the Human Dopamine Transporter. | LitMetric

The dopamine transporter (DAT) serves a pivotal role in controlling dopamine (DA)-mediated neurotransmission by clearing DA from synaptic and perisynaptic spaces and controlling its action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DAT to mediate their effects by enhancing extracellular DA concentrations. We previously identified a novel allosteric site in the related human serotonin transporter that lies outside the central substrate and inhibitor binding pocket. We used the hybrid structure based (HSB) method to screen for allosteric modulator molecules that target a similar site in DAT. We identified a compound, KM822, that was found to be a selective, noncompetitive inhibitor of DAT. We confirmed the structural determinants of KM822 allosteric binding within the allosteric site by structure/function and substituted cysteine scanning accessibility biotinylation experiments. In the in vitro cell-based assay and ex vivo in both rat striatal synaptosomal and slice preparations, KM822 was found to decrease the affinity of cocaine for DAT. The in vivo effects of KM822 on cocaine were tested on psychostimulant-associated behaviors in a planarian model where KM822 specifically inhibited the locomotion elicited by DAT-interacting stimulants amphetamine and cocaine. Overall, KM822 provides a unique opportunity as a molecular probe to examine allosteric modulation of DAT function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703927PMC
http://dx.doi.org/10.1021/acschemneuro.9b00262DOI Listing

Publication Analysis

Top Keywords

novel allosteric
8
allosteric modulator
8
dopamine transporter
8
amphetamine cocaine
8
allosteric site
8
allosteric
6
dat
6
km822
6
identification novel
4
modulator human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!