The corpus cavernosum smooth muscle is important for both erection of the penis and for maintaining penile flaccidity. Most of the time, the smooth muscle cells are in a contracted state, which limits filling of the corpus sinuses with blood. Occasionally, however, they relax in a co-ordinated manner, allowing filling to occur. This results in an erection. When contractions of the corpus cavernosum are measured, it can be deduced that the muscle cells work together in a syncytium, for not only do they spontaneously contract in a co-ordinated manner, but they also synchronously relax. It is challenging to understand how they achieve this.In this review we will attempt to explain the activity of the corpus cavernosum, firstly by summarising current knowledge regarding the role of ion channels and how they influence tone, and secondly by presenting data on the intracellular Ca signals that interact with the ion channels. We propose that spontaneous Ca waves act as a primary event, driving transient depolarisation by activating Ca-activated Cl channels. Depolarisation then facilitates Ca influx via L-type voltage-dependent Ca channels. We propose that the spontaneous Ca oscillations depend on Ca release from both ryanodine- and inositol trisphosphate (IP)-sensitive stores and that modulation by signalling molecules is achieved mainly by interactions with the IP-sensitive mechanism. This pacemaker mechanism is inhibited by nitric oxide (acting through cyclic GMP) and enhanced by noradrenaline. By understanding these mechanisms better, it might be possible to design new treatments for erectile dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-5895-1_7 | DOI Listing |
Ann Anat
December 2024
Department of Urology, Graduate School of Medicine and Dentistry, Hiroshima University School of Medicine, Hiroshima, Japan.
Background: There is little information about when and how cavernosal sinusoidal endothelia develop in the external genitalia of fetuses.
Methods: We examined histological sections of erectile tissue in 37 human fetuses (25 males and 12 females) whose gestational age (GA) ranged from 8 to 40 weeks.
Results: The sinusoidal lumen was filled with blood in the glans of the penis and clitoris at a GA of 10-11 weeks, and in the corpus spongiosum at a GA of 15-16 weeks.
BMC Urol
December 2024
Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
Background: Current treatments for penile erectile structures reconstruction are limited and remain a great challenge in clinical practice. Tissue engineering techniques using different seed cells and scaffolds to construct a neo-tissue open promising avenues for penile erectile structures repair and replacement and show great promise in the restoration of: structure, mechanical property, and function which matches the original tissue.
Methods: A comprehensive literature review was conducted by accessing the NCBI PubMed, Cochrane, and Google Scholar databases from January 1, 1990, to January, 1, 2022 using the search terms "Tissue engineering, Corpus cavernosum (CC), Tunica albuginea (TA), Acellular Matrix, Penile Reconstruction".
Basic Clin Androl
December 2024
Faculty of Medicine, Department of Urology, Yıldırım Beyazıt University, Bilkent, Polatlı caddesi, No:125/4, Gazi Mahallesi, Yenimahalle, Ankara, Turkey.
Background: To evaluate the effects of penile revascularization surgery on penile vascular hemodynamics and to assess the utility of the resistive index (RI) as an objective parameter for postoperative patient follow-up.
Methods: This study included a total of 35 patients who underwent penile revascularization. Penile color Doppler ultrasonography was performed preoperatively and at the third postoperative month to evaluate cavernosal arteries, dorsal arteries, deep dorsal vein, and inferior epigastric artery.
Adv Mater
December 2024
National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
Mitochondrial damage caused by external stimuli, such as high glucose levels and inflammation, results in excessive reactive oxygen species (ROS) production. Existing antioxidants can only scavenge ROS and cannot address the root cause of ROS production, namely, abnormal mitochondria. To overcome this limitation, the study develops a piezoelectric synergistic drug-loaded nanosystem (BaTCG nanosystem) that targets mitochondria.
View Article and Find Full Text PDFJ Sex Med
December 2024
Microsurgical Potency Reconstruction Center, Shu-Tien Urology Ophthalmology Clinic, Taipei 10662, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!