The urethra is a muscular tube that extends from the bladder neck and is composed of an inner layer of smooth muscle referred to as the internal urethral sphincter and an outer layer of striated muscle which forms the external urethral sphincter. The smooth muscle layer can be separated into an inner layer of longitudinally orientated smooth muscle and an outer, relatively thinner, layer of circular muscle. Tonic contraction of both the smooth and striated muscle components of the urethra generates a urethral closure pressure which exceeds intravesical pressure in the bladder to maintain urinary continence. It is likely that contraction of urethral smooth muscle is involved in the long-term maintenance of tone, since it can achieve this at relatively low energy cost, whereas the striated muscle contributes more to the rise in urethral tone that accompanies increases in bladder pressure secondary to coughing or other sudden increases in intra-abdominal pressure. The level of urethral smooth muscle tone is regulated by several autonomic neurotransmitters, including noradrenaline, acetylcholine, ATP and nitric oxide. However, it is also clear that urethral smooth muscle is capable of generating significant tone in the absence of neural input. In this chapter we will discuss the mechanisms responsible for contraction of urethral smooth muscle, with specific focus on the role of ion channels and Ca handling proteins to this process. The mechanisms underlying spontaneous activity in urethral interstitial cells (UICs), putative pacemaker cells of the urethra, will also be examined along with the modulation of these mechanisms by key excitatory and inhibitory neurotransmitters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-5895-1_6 | DOI Listing |
Virchows Arch
January 2025
Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
Low-grade endometrial stromal sarcoma (LG-ESS) can present diagnostic challenges, due to its overlapping morphological features with other uterine mesenchymal tumors. Misdiagnosis rates remain significant, and immunohistochemical data for LG-ESS are limited to small series and inconsistent antibody panels. This study aimed to refine the IHC profile of LG-ESS by analyzing a large, molecularly confirmed series of 147 cases using a panel of 24 antibodies, including newer markers like transgelin and smoothelin.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver BC, Canada.
Fumarate hydratase tumor predisposition syndrome (FHTPS) is caused by germline fumarate hydratase (FH) pathogenic variants (PVs). Most women with FHTPS develop FH-deficient (FHD) uterine leiomyomas (ULs), which arise 10 to 15 years earlier than aggressive FHD-renal cell carcinoma. We evaluate a previously proposed FHTPS screening strategy for women with ULs.
View Article and Find Full Text PDFiScience
January 2025
Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
Diabetic vascular aging is driven by macrophage senescence, which propagates senescence-associated secretory phenotypes (SASP), exacerbating vascular dysfunction. This study utilized a type 2 diabetes mellitus (T2DM) mouse model induced by streptozotocin injection and a high-fat diet to investigate the role of STING in macrophage senescence. Vascular aging markers and senescent macrophages were assessed , while , high glucose treatment induced macrophage senescence, enhancing senescence in co-cultured vascular smooth muscle cells.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
Front Pharmacol
January 2025
National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!