There are few studies examining the ventilation strategies recommended by current CPR guidelines. We investigated the influence of different minute volume applying to untreated cardiac arrest with different duration, on resuscitation effects in a pig model. 32 Landrace pigs with 4 or 8 min (16 pigs each) ventricular fibrillation (VF) randomly received two ventilation strategies during CPR. "Guideline" groups received mechanical ventilation with a tidal volume of 7 ml/kg and a frequency of 10/min, while "Baseline" groups received a tidal volume (10 ml/kg) and a frequency used at baseline to maintain an end-tidal PCO (PCO) between 35 and 40 mmHg before VF. Mean airway pressures and intrathoracic pressures (P) in the Baseline-4 min group were significantly higher than those in the Guideline-4 min group (all P < 0.05). Similar results were observed in the 8 min pigs, except for no significant difference in minimal P and PCO during 10 min of CPR. Venous pH and venous oxygen saturation were significantly higher in the Baseline-8 min group compared to the Guideline-8 min group (all P < 0.05). Aortic pressure in the Baseline-8 min group was higher than in the Guideline-8 min group. Seven pigs in each subgroup of 4 min VF models achieved the return of spontaneous circulation (ROSC). Higher ROSC was observed in the Baseline-8 min group than in the Guideline-8 min group (87.5% vs. 37.5%, P = 0.039). For 4 min VF but not 8 min VF, a guideline-recommended ventilation strategy had satisfactory results during CPR. A higher minute ventilation resulted in better outcomes for subjects with 8 min of untreated VF through thoracic pump.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10877-019-00336-6DOI Listing

Publication Analysis

Top Keywords

cardiac arrest
8
pig model
8
ventilation strategies
8
groups received
8
tidal volume
8
duration cardiac
4
arrest requires
4
ventilation
4
requires ventilation
4
ventilation volumes
4

Similar Publications

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

View Article and Find Full Text PDF

Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.

View Article and Find Full Text PDF

Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for treatment of secondary neurological injury.

View Article and Find Full Text PDF

Hyperkaliaemic cardiac arrest in Angelman's syndrome following suxamethonium.

BMJ Case Rep

December 2024

Critical Care, North West Anglia NHS Foundation Trust, Peterborough, UK.

We present a case of hyperkaliaemic cardiac arrest in a patient with Angelman's syndrome after administration of suxamethonium in rapid sequence intubation. The patient was admitted to the critical care unit in with aspiration pneumonia and intestinal obstruction. They had a cardiac arrest after suxamethonium administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!