Reorganization of the nuclear compartments involved in transcription and RNA processing in myonuclei of type I spinal muscular atrophy.

Histochem Cell Biol

Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.

Published: September 2019

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by the loss or mutation of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to the degeneration of motor neurons and muscular atrophy. In this study, we analyzed the nuclear reorganization in human skeletal myofibers from a type I SMA patient carrying a deletion of exons 7 and 8 in the SMN1 gene and two SMN2 gene copies and showing reduced SMN protein levels in the muscle compared with those in control samples. The morphometric analysis of myofiber size revealed the coexistence of atrophic and hypertrophic myofibers in SMA samples. Compared with controls, both nuclear size and the nuclear shape factor were significantly reduced in SMA myonuclei. Nuclear reorganization in SMA myonuclei was characterized by extensive heterochromatinization, the aggregation of splicing factors in large interchromatin granule clusters, and nucleolar alterations with the accumulation of the granular component and a loss of fibrillar center/dense fibrillar component units. These nuclear alterations reflect a severe perturbation of global pre-mRNA transcription and splicing, as well as nucleolar dysfunction, in SMA myofibers. Moreover, the finding of similar nuclear reorganization in both atrophic and hypetrophic myofibers provides additional support that the SMN deficiency in SMA patients may primarily affect the skeletal myofibers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-019-01792-6DOI Listing

Publication Analysis

Top Keywords

muscular atrophy
12
nuclear reorganization
12
type spinal
8
spinal muscular
8
sma
8
smn1 gene
8
smn protein
8
protein levels
8
skeletal myofibers
8
sma myonuclei
8

Similar Publications

Hirayama disease, also known as non-progressive juvenile spinal muscular atrophy of the upper limbs, brachial monomelic amyotrophy, or benign focal atrophy, affects the C7 D1 myotomes; an electromyogram (EMG) shows neurogenic damage in the C7-C8-T1 territories. It causes weakness and amyotrophy of the distal upper limb. Although it usually occurs on one side only, bilateral symmetric cases of Hirayama disease have occasionally been described.

View Article and Find Full Text PDF

Background: Falls and sarcopenia are significant public health issues in Vietnam. Despite muscle strength being a critical predictor for these conditions, reference data on muscle strength within the Vietnamese population are lacking.

Purpose: To establish the reference ranges for muscle strength among Vietnamese individuals.

View Article and Find Full Text PDF

Background: Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!