Pathogenesis of Atopic Dermatitis: Current Paradigm.

Iran J Immunol

Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Japan.

Published: June 2019

AI Article Synopsis

Article Abstract

Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction and chronic pruritus. In this review, recent advances in the pathogenesis of AD are summarized. Clinical efficacy of the anti-IL-4 receptor antibody dupilumab implies that type 2 cytokines IL-4 and IL-13 have pivotal roles in atopic inflammation. The expression of IL-4 and IL-13 as well as type 2 chemokines such as CCL17, CCL22 and CCL26 is increased in the lesional skin of AD. In addition, IL-4 and IL-13 down-regulate the expression of filaggrin in keratinocytes and exacerbate epidermal barrier dysfunction. Keratinocytes in barrier-disrupted epidermis produce large amounts of thymic stromal lymphopoietin, IL-25 and IL-33, conducing to type 2 immune deviation via OX40L/OX40 signaling. IL-31, produced by type 2 T cells, is a cardinal pruritogenic cytokine. IL-4 and IL-13 also amplify the IL-31-mediated sensory nerve signal. These molecules are particularly important targets for future drug development for AD.

Download full-text PDF

Source
http://dx.doi.org/10.22034/IJI.2019.80253DOI Listing

Publication Analysis

Top Keywords

il-4 il-13
16
atopic dermatitis
8
barrier dysfunction
8
pathogenesis atopic
4
dermatitis current
4
current paradigm
4
paradigm atopic
4
dermatitis characterized
4
characterized skin
4
skin inflammation
4

Similar Publications

Background: Inhibition of IL-4/IL-13 driven inflammation by dupilumab has shown significant clinical benefits in treatment of atopic dermatitis (AD).

Objective: To assess longitudinal protein and metabolite composition in AD skin during dupilumab treatment.

Methods: Skin tape strip (STS) were collected from lesional/non-lesional skin of 20 AD patients during 16-week dupilumab treatment and from 20 healthy volunteers (HV) followed for 16-weeks.

View Article and Find Full Text PDF

Evidence of Inflammatory Network Disruption in Chronic Venous Disease: An Analysis of Circulating Cytokines and Chemokines.

Biomedicines

January 2025

Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain.

Chronic venous disease (CVD) comprises a set of vascular disorders that affect the venous system with important local and systemic repercussions. A growing body of evidence displays the relationship between suffering from CVD and a marked deregulation of the immune inflammatory system. In this sense, the previous literature has reported some significant changes in the level of various circulating inflammatory parameters in these patients.

View Article and Find Full Text PDF

Increasing epidemiological evidence has proved that early-life exposure to inorganic arsenic (As) elevates the risks of childhood asthma. The present research aimed to explore susceptibility of respiratory As exposure to allergic asthma in a mouse model. BALB/c mice on postnatal day (PND) 28 were exposed to ddHO or NaAsO aerosol for 4 hours daily over 5 consecutive weeks via respiratory tract.

View Article and Find Full Text PDF

Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling.

Biomed Pharmacother

January 2025

KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea. Electronic address:

Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms.

View Article and Find Full Text PDF

Activated keratinocytes play a crucial role in skin inflammation through the production of multiple inflammatory mediators; however, little is known about cytokine secretion by activated keratinocytes in dogs. This study aimed to investigate the effects of the Th1 and Th2 types of cytokines on the production of keratinocyte-derived inflammatory mediators. Canine progenitor epidermal keratinocytes (CPEKs) were incubated with canine recombinant IL-4, IL-13, an IL4/IL13 mixture, IFN-γ, TNF-α, or an IFN-γ/TNF-α mixture for 24 h following 100% confluency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!