How climate change influences the dynamics of plant populations is not well understood, as few plant studies have measured responses of vital rates to climatic variables and modeled the impact on population growth. The present study used 25 y of demographic data to analyze how survival, growth, and fecundity respond to date of spring snowmelt for a subalpine plant. Fecundity was estimated by seed production (over 15 y) and also divided into flower number, fruit set, seeds per fruit, and escape from seed predation. Despite no apparent effects on flower number, plants produced more seeds in years with later snowmelt. Survival and probability of flowering were reduced by early snowmelt in the previous year. Based on demographic models, earlier snowmelt with warming is expected to lead to negative population growth, driven especially by changes in seedling establishment and seed production. These results provide a rare example of how climate change is expected to influence the dynamics of a plant population. They furthermore illustrate the potential for strong population impacts even in the absence of more commonly reported visual signs, such as earlier blooming or reduced floral display in early melting years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600911 | PMC |
http://dx.doi.org/10.1073/pnas.1820096116 | DOI Listing |
Sci Total Environ
January 2025
School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia. Electronic address:
Life at Robinson Ridge, located in the Windmill Islands region of East Antarctica, is susceptible to a changing climate. At this site, responses of the vegetation communities and moss-beds have been well researched, but corresponding information for microbial counterparts is still lacking. To bridge this knowledge gap, we established baseline data for monitoring the environmental drivers shaping the soil microbial community on the local 'hillslope' scale.
View Article and Find Full Text PDFJ Plant Res
December 2024
Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Water Research Center, Sultan Qaboos University, Muscat, Oman.
In this research, we demonstrate the effectiveness of a convolutional neural network (CNN) model, integrated with the ERA5-Land dataset, for accurately simulating daily streamflow in a mountainous watershed. Our methodology harnesses image-based inputs, incorporating spatial distribution maps of key environmental variables, including temperature, snowmelt, snow cover, snow depth, volumetric soil water content, total evaporation, total precipitation, and leaf area index. The proposed CNN architecture, while drawing inspiration from classical designs, is specifically tailored for the task of streamflow prediction.
View Article and Find Full Text PDFSci Rep
November 2024
School of Geology and Mining Engineering, Xinjiang University, Urumqi, 830049, China.
Environ Pollut
December 2024
Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo, Hokkaido, 060-8589, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!