Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To enhance the efficiency of next-generation ferroelectric (FE) electronic devices, new techniques for controlling ferroelectric polarization switching are required. While most prior studies have attempted to induce polarization switching via the excitation of phonons, these experimental techniques required intricate and expensive terahertz sources and have not been completely successful. Here, we propose a new mechanism for rapidly and efficiently switching the FE polarization via laser-tuning of the underlying dynamical potential energy surface. Using time-dependent density functional calculations, we observe an ultrafast switching of the FE polarization in BaTiO within 200 fs. A laser pulse can induce a charge density redistribution that reduces the original FE charge order. This excitation results in both desirable and highly directional ionic forces that are always opposite to the original FE displacements. Our new mechanism enables the reversible switching of the FE polarization with optical pulses that can be produced from existing 800 nm experimental laser sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b01046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!