This study proposes a novel instantaneous total energy method to perform an activity analysis of ground fissures deformation, which is calculated by integrating the extreme-point symmetric mode decomposition (ESMD) method and kinetic energy based on the time-series displacement acquired by shape acceleration array (SAA) sensors. The proposed method is tested on the Xiwang Road fissure in Beijing, China. First, to fully monitor the hanging wall and footwall of the monitored ground fissure, a 4 m-long SAA in the vertical direction and an 8 m-long SAA in the horizontal direction were embedded in a ground fissure to obtain an accurate time-series displacement with an accuracy of ±1.5 mm/32 m and a displacement acquisition frequency of once an hour. Second, to improve the accuracy of the activity analysis, the ESMD method and Spearman's rho are applied to perform signal denoising of the original time-series displacement obtained by the SAA sensors. Finally, the instantaneous total energy is obtained to analyze the activity of the monitored ground fissure. The results demonstrate that the proposed method is more reliable to reflect the activity of a monitored ground fissure compared to the time-series displacement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603624 | PMC |
http://dx.doi.org/10.3390/s19112607 | DOI Listing |
Sci Rep
January 2025
School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.
View Article and Find Full Text PDFBMC Pulm Med
December 2024
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: This study explores the value of interlobar fissure semilunar sign(IFSS) based on multifactor joint analysis in predicting the invasiveness of ground glass nodules(GGNs) with interlobar fissure attachment in the lungs.
Methods: This was a retrospective analysis of clinical data and CT images of 203 GGNs attached to the interlobar fissures confirmed by surgery and pathology. According to pathological results, those GGNs were divided into three groups: glandular precursor lesion (atypical adenomatous hyperplasia/adenocarcinoma in situ), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC).
Materials (Basel)
November 2024
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Ophthalmol Sci
August 2024
Kellogg Eye Center, Department of Ophthalmology & Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, Michigan, 48105.
Purpose: Pupillary instability is a known risk factor for complications in cataract surgery. This study aims to develop and validate an innovative and reliable computational framework for the automated assessment of pupil morphologic changes during the various phases of cataract surgery.
Design: Retrospective surgical video analysis.
Sci Rep
September 2024
Xiamen R&B BAICHENG Co., Ltd, Xiamen, 361008, China.
This study aims to analyze the vibration signals near the ground surface due to the underneath drilling and blasting activities in a fissured rock tunnel. Blasting induced vibration on the ground surface was continuously monitored in a fissured rock tunnel drilling and blasting excavation project in field. Wavelet packet analysis of the vibration signals using Matlab was carried out for signal denoising, differential blasting delay time interval identification, and three-way time-frequency energy analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!