Six novel amino acid chromophores were synthesized and their spectroscopic, acid-base, and electrochemical properties are discussed in this work. In studied compounds, selected amino acid residues (l-Aspartic acid, l-Glutamic acid, l-Glutamine, l-Histidine, l-Lysine, l-Arginine) are attached to the 1-(piperazine) 9,10-anthraquinone skeleton via the amide bond between the carboxyl group of amino acid and nitrogen atom of the piperazine ring. All derivatives have been characterized using a variety of spectroscopic techniques (mass spectrometry, 1HNMR, UV-Vis, IR spectroscopy), acid-base (electrochemical and UV-Vis) titrations, and cyclic voltammetry methods. Basing on observed experimental effects, supported by quantum chemical simulations, the structure-properties links were established. They are indicative of the specific interactions within and/or in-between amino acid side groups, which are prone to form both, intra- and intermolecular hydrogen bonds as well as electrostatic interactions with the anthraquinone system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117226DOI Listing

Publication Analysis

Top Keywords

amino acid
16
acid-base electrochemical
8
acid
6
amino
5
hydrogen bonding
4
bonding protonation
4
protonation effects
4
effects amino
4
amino acids'
4
acids' anthraquinone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!