Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier.

Neurosci Lett

Departments of Pharmacology, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, Minneapolis, MN, United States; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Published: August 2019

The apolipoprotein E (APOE) ε4 allele has been demonstrated as the preeminent genetic risk factor for late onset Alzheimer's disease (AD), which comprises greater than 90% of all AD cases. The discovery of the connection between different APOE genotypes and AD risk in the early 1990s spurred three decades of intense and comprehensive research into the function of APOE in the normal and diseased brain. The importance of APOE in the periphery has been well established, due to its pivotal role in maintaining cholesterol homeostasis and cardiovascular health. The influence of vascular factors on brain function and AD risk has been extensively studied in recent years. As a major apolipoprotein regulating multiple molecular pathways beyond its canonical lipid-related functions in the periphery and the central nervous system, APOE represents a critical link between the two compartments, and may influence AD risk from both sides of the blood-brain barrier. This review discusses recent advances in understanding the different functions of APOE in the periphery and in the brain, and highlights several promising APOE-targeted therapeutic strategies for AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693948PMC
http://dx.doi.org/10.1016/j.neulet.2019.134306DOI Listing

Publication Analysis

Top Keywords

central nervous
8
nervous system
8
system apoe
8
alzheimer's disease
8
blood-brain barrier
8
apoe periphery
8
apoe
7
peripheral versus
4
versus central
4
apoe alzheimer's
4

Similar Publications

Correspondence to the Editor: Reirradiation in Paediatric Tumors of the Central Nervous System: Outcome and Side Effects After Implementing National Guidelines.

Clin Oncol (R Coll Radiol)

January 2025

RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.

View Article and Find Full Text PDF

Introduction: Given its proximity to the central nervous system, surgical site infections (SSIs) after craniotomy (SSI-CRAN) represent a serious adverse event. SSI-CRAN are associated with substantial patient morbidity and mortality. Despite the recognition of SSI in other surgical fields, there is a paucity of evidence in the neurosurgical literature devoted to skin closure, specifically in patients with brain tumors.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!