Triiodothyronine reduces toxic effects of diazinon in Persian sturgeon (Acipenser persicus) embryos.

Comp Biochem Physiol C Toxicol Pharmacol

Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:

Published: October 2019

Thyroid hormones (THs) play an important role in early stages development of fish species. Manual elevation of THs in the embryos improves viability and hatching success. However, the impacts of endocrine disrupting chemicals on THs-treated embryos are unclear. This study investigated the effect of triiodothyronine (T3) to mitigate toxic effects of diazinon in the endangered Persian sturgeon (Acipenser persicus) eggs and embryos. Fertilized eggs were exposed to nominal concentrations of 0, 2, 4, 6, and 8 mg/L diazinon and the 96 h LC50 value was calculated at 3.5 mg/L. Eggs were then treated with exogenous T3 (1 ng/mL: LT3, and 10 ng/mL: HT3) and exposed to 3.5 mg/L diazinon (DLT3 and DHT3). Total THs concentrations, levels of cortisol, and expression of the igf-II gene were measured during embryogenesis. All the measured endpoints were significantly different between treatments or stages of incubation. Generally, despite insignificance in some cases, higher levels of T3 and Thyroxin (T4) were observed in T3-treated embryos regardless of the presence of diazinon. Cortisol was high in unfertilized eggs which reduced after fertilization. The igf-II gene up-regulated quickly after fertilization; was higher in T3-treated embryos. Exposure of eggs to diazinon reduced the levels of T3, T4, and igf-II gene expression, which corresponded to the lowest hatching. We concluded that exogenous T3 improves embryos development in A. persicus, which is a promising application for conservation strategies. Our study suggests that treating embryos with 10 ng/L T3 is a suitable way to overcome problems of incubation in diazinon-polluted water sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2019.06.001DOI Listing

Publication Analysis

Top Keywords

igf-ii gene
12
toxic effects
8
effects diazinon
8
persian sturgeon
8
sturgeon acipenser
8
acipenser persicus
8
embryos
8
t3-treated embryos
8
diazinon
6
eggs
5

Similar Publications

Identification of Three Genotypes in Largemouth Bass () and Their Differential Physiological Responses to Feed Domestication.

Animals (Basel)

December 2024

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of in largemouth bass () were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different genotypes were analyzed in two populations, and physiological responses of different genotypes to feed domestication were investigated.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Potential Utility of Circulating MicroRNA-483 as a Biomarker for IGF-II-Associated Non-Islet Cell Tumor Hypoglycemia.

J Clin Endocrinol Metab

December 2024

Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.

Context: In most cases of non-islet cell tumor hypoglycemia (NICTH), high molecular weight forms of insulin-like growth factor II, commonly referred to as big IGF-II, cause hypoglycemia. MicroRNA-483 (miR-483), encoded within an intron of IGF2 gene, has been suggested to be co-expressed with IGF-II.

Objective: The aim of this study is to demonstrate the utility and reliability of circulating miR-483 as a biomarker for diagnosis and therapeutic outcome of NICTH.

View Article and Find Full Text PDF

Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth.

Commun Biol

December 2024

Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.

Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.

View Article and Find Full Text PDF

Wilms tumor, the most common pediatric kidney cancer, accounts for 5% of childhood cancers and is classified by stage and histological subtype. Despite high survival rates (80-85%), approximately 15% of patients experience relapse, reducing survival to around 50%. Epigenetic changes, particularly DNA methylation, play a critical role in Wilms tumor pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!