The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents.

J Mol Biol

Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. Electronic address:

Published: August 2019

Microcin B17 (MccB17) is an antibacterial peptide produced by strains of Escherichia coli harboring the plasmid-borne mccB17 operon. MccB17 possesses many notable features. It is able to stabilize the transient DNA gyrase-DNA cleavage complex, a very efficient mode of action shared with the highly successful fluoroquinolone drugs. MccB17 stabilizes this complex by a distinct mechanism making it potentially valuable in the fight against bacterial antibiotic resistance. MccB17 was the first compound discovered from the thiazole/oxazole-modified microcins family and the linear azole-containing peptides; these ribosomal peptides are post-translationally modified to convert serine and cysteine residues into oxazole and thiazole rings. These chemical moieties are found in many other bioactive compounds like the vitamin thiamine, the anti-cancer drug bleomycin, the antibacterial sulfathiazole and the antiviral nitazoxanide. Therefore, the biosynthetic machinery that produces these azole rings is noteworthy as a general method to create bioactive compounds. Our knowledge of MccB17 now extends to many aspects of antibacterial-bacteria interactions: production, transport, interaction with its target, and resistance mechanisms; this knowledge has wide potential applicability. After a long time with limited progress on MccB17, recent publications have addressed critical aspects of MccB17 biosynthesis as well as an explosion in the discovery of new related compounds in the thiazole/oxazole-modified microcins/linear azole-containing peptides family. It is therefore timely to summarize the evidence gathered over more than 40 years about this still enigmatic molecule and place it in the wider context of antibacterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722960PMC
http://dx.doi.org/10.1016/j.jmb.2019.05.050DOI Listing

Publication Analysis

Top Keywords

microcin b17
8
mccb17
8
azole-containing peptides
8
bioactive compounds
8
microbial toxin
4
toxin microcin
4
b17 prospects
4
prospects development
4
development antibacterial
4
antibacterial agents
4

Similar Publications

Plasmidome of Salmonella enterica serovar Infantis recovered from surface waters in a major agricultural region for leafy greens in California.

PLoS One

January 2025

Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America.

Non-typhoidal Salmonella enterica is a leading cause of gastrointestinal illnesses in the United States. Among the 2,600 different S. enterica serovars, Infantis has been significantly linked to human illnesses and is frequently recovered from broilers and chicken parts in the U.

View Article and Find Full Text PDF

Screening and Genomic Profiling of Antimicrobial Bacteria Sourced from Poultry Slaughterhouse Effluents: Bacteriocin Production and Safety Evaluation.

Genes (Basel)

December 2024

Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.

Antimicrobial-resistant (AMR) pathogens represent a serious threat to public health, particularly in food production systems where antibiotic use remains widespread. As a result, alternative antimicrobial treatments to antibiotics are essential for effectively managing bacterial infections. This study aimed to identify and characterize novel antimicrobial peptides produced by bacteria, known as bacteriocins, as well as to recognize safe bacteriocin-producing strains, sourced from poultry slaughterhouse effluents.

View Article and Find Full Text PDF

Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide-conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems.

View Article and Find Full Text PDF

Interspecies interactions involving direct competition bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific and strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!