Genetically engineered T cells expressing chimeric antigen receptors (CAR) present a new treatment option for patients with cancer. Recent clinical trials of B cell leukemia have demonstrated a response rate of up to 90%. However, CAR cell therapy is frequently accompanied by severe side effects such as cytokine release syndrome and the development of target cell resistance. Consequently, further optimization of CARs to obtain greater long-term efficacy and increased safety is urgently needed. Here we high-light the various efforts of adjusting the intracellular signaling domains of CARs to these major requirements to eventually obtain high-level target cell cytotoxicity paralleled by the establishment of longevity of the CAR expressing cell types to guarantee for extended tumor surveillance over prolonged periods of time. We are convinced that it will be crucial to identify the molecular pathways and signaling requirements utilized by such 'efficient CARs' in order to provide a rational basis for their further hypothesis-based improvement. Furthermore, we here discuss timely attempts of how to: i) control 'on-tumor off-target' effects; ii) introduce Signal 3 (cytokine responsiveness of CAR cells) as an important building-block into the CAR concept; iii) most efficiently eliminate CAR cells once full remission has been obtained. We also argue that universal systems for the variable and pharmacokinetically-controlled attachment of extracellular ligand recognition domains of choice along with the establishment of 'off-the-shelf' cell preparations with suitability for all patients in need of a highly-potent cellular therapy may become future mainstays of CAR cell therapy. Such therapies would have the attraction to work independent of the patients' histocompatibility make-up and the availability of functionally intact patient's cells. Finally, we summarize the evidence that CAR cells may obtain a prominent place in the treatment of non-malignant and auto-reactive T and B lymphocyte expansions in the near future, e.g., for the alleviation of autoimmune diseases and allergies. After the introduction of red blood cell transfusions, which were made possible by the landmark discoveries of the ABO blood groups by Karl Landsteiner, and the establishment of bone marrow transplantation by E. Donnall Thomas to exchange the entire hematopoietic system of a patient suffering from leukemia, the introduction of patient-tailored cytotoxic cellular populations to eradicate malignant cell populations in vivo pioneered by Carl H. June, represents the third major and broadly applicable milestone in the development of human cellular therapies within the rapidly developing field of applied biomedical research of the last one hundred years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058416 | PMC |
http://dx.doi.org/10.1016/j.imlet.2019.06.002 | DOI Listing |
Regen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFMedComm (2020)
February 2025
Chimeric antigen receptor T-cell (CAR-T) therapy is a revolutionary approach in cancer treatment. More than 10 CAR-T products have already approved on market worldly wide, and they use either gamma retroviral vectors or lentiviral vectors to deliver the CAR gene. Both vectors have the ability to effectively and persistently integrate the CAR gene into T cells.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Adoptive cell therapy (ACT) is a type of immunotherapy in which autologous or allogeneic immune cells, such as tumor-infiltrating lymphocytes or engineered lymphocytes, are infused into patients with cancer to eliminate malignant cells. Recently, autologous T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 showed a positive response in clinical studies for hematologic malignancies and have begun to be used in clinical practice. This article discusses the current status and promise of ACT research in hepatocellular carcinoma (HCC), focusing on challenges in off-the-shelf ACT using primary cells or induced pluripotent stem cells (iPSCs) with or without genetic engineering.
View Article and Find Full Text PDFMol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!