AI Article Synopsis

  • Accurate scatter correction is crucial for effective PET imaging, with Monte Carlo simulation (MCS) being the most precise but historically slow for clinical use.
  • A new MCS implementation utilizing GPU acceleration enables faster, full scatter correction suitable for 3D brain PET imaging by simulating photon behavior efficiently.
  • This GPU-based method showed a significant speed increase (776 times faster) compared to traditional single-threaded CPU simulations, paving the way for MCS to be more widely adopted in clinical settings.

Article Abstract

Accurate scatter correction is essential for qualitative and quantitative PET imaging. Until now, scatter correction based on Monte Carlo simulation (MCS) has been recognized as the most accurate method of scatter correction for PET. However, the major disadvantage of MCS is its long computational time, which makes it unfeasible for clinical usage. Meanwhile, single scatter simulation (SSS) is the most widely used method for scatter correction. Nevertheless, SSS has the disadvantage of limited robustness for dynamic measurements and for the measurement of large objects. In this work, a newly developed implementation of MCS using graphics processing unit (GPU) acceleration is employed, allowing full MCS-based scatter correction in clinical 3D brain PET imaging. Starting from the generation of annihilation photons to their detection in the simulated PET scanner, all relevant physical interactions and transport phenomena of the photons were simulated on GPUs. This resulted in an expected distribution of scattered events, which was subsequently used to correct the measured emission data. The accuracy of the approach was validated with simulations using GATE (Geant4 Application for Tomography Emission), and its performance was compared to SSS. The comparison of the computation time between a GPU and a single-threaded CPU showed an acceleration factor of 776 for a voxelized brain phantom study. The speedup of the MCS implemented on the GPU represents a major step toward the application of the more accurate MCS-based scatter correction for PET imaging in clinical routine.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2019.2921872DOI Listing

Publication Analysis

Top Keywords

scatter correction
28
pet imaging
12
scatter
8
correction based
8
monte carlo
8
carlo simulation
8
method scatter
8
correction pet
8
mcs-based scatter
8
correction
6

Similar Publications

Development of an image quality evaluation system for bedside chest X-ray images using scatter correction processing.

Radiol Phys Technol

January 2025

Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa, Tokyo, 116-8551, Japan.

In plain radiography, scattered X-ray correction processing (Virtual Grid: VG) is used to estimate and correct scattered rays in images. We developed an objective evaluation system for bedside chest X-ray images using VG and investigated its usefulness. First, we trained the blind/referenceless image spatial quality evaluator (BRISQUE) on 200 images obtained by portable chest radiography.

View Article and Find Full Text PDF

Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification.

View Article and Find Full Text PDF

Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement.

Sensors (Basel)

December 2024

Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.

Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.

View Article and Find Full Text PDF

Background/objectives: There is scattered information in the scientific literature regarding the characterization of probiotic bacteria found in fermented milk beverages and the beneficial effects of probiotic bacteria on human health. Our objective was to gather the available information on the use of probiotic bacteria in the prevention of civilization diseases, with a special focus on the prevention of obesity, diabetes, and cancer.

Methods: We carried out a literature review including the following keywords, either individually or collectively: lactic acid bacteria; probiotic bacteria; obesity; lactose intolerance; diabetes; cancer protection; civilization diseases; intestinal microbiota; intestinal pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!