Chlorination-Promoted Skeletal Transformations of Fullerenes.

Acc Chem Res

Department of Chemistry , Moscow State University, 119991 Moscow , Russia.

Published: July 2019

Classical fullerenes are built of pentagonal and hexagonal rings, and the conventional syntheses produce only those isomers that obey the isolated-pentagon rule (IPR), where all pentagonal rings are separated from each other by hexagonal rings. Upon exohedral derivatization, the IPR fullerene cages normally retain their connectivity pattern. However, it has been discovered that high-temperature chlorination of fullerenes with SbCl or VCl can induce skeletal transformations that alter the carbon cage topology, as directly evidenced by single crystal X-ray diffraction studies of the chlorinated products of a series of fullerenes in the broad range of C to C. Two general types of transformations have been identified: (i) the Stone-Wales rearrangement (SWR) that consists of a rotation of a C-C bond by 90°, and (ii) the removal of a C-C bond, i.e., C loss (C2L). Single- or multistep SWR and/or C2L transformations afford either classical non-IPR fullerenes bearing fused pentagons (highlighted in red in the TOC picture) or nonclassical () fullerenes with = 1-3 heptagonal rings (highlighted in blue in the TOC picture) often flanked by fused pentagons. Several subtypes of the SWR and C2L processes can be further discerned depending on the local topology of the transformed region of the cage. Under the chlorination conditions, the non-IPR and carbon cages that would be energetically unfavorable and mostly labile in their pristine state are instantaneously stabilized by chlorination of the pentagon-pentagon junctions and by delimitation of the original spherical π-system into smaller favorable aromatic fragments. The significance of the chlorination-promoted skeletal transformations within the realm of fullerene chemistry is demonstrated by the growing body of examples. To date, these include single- and multistep SWRs in the buckminsterfullerene C and in the higher fullerenes C(1), C(2), C(3), and C102(19), single and multistep C2Ls (i.e., cage shrinkage) in C(16), C(33), C(28), C(50), C(80), C(114), and C102(19), and multistep combinations of SWRs and C2Ls in C(3), C(33), and C(18), (IPR isomer numbering in parentheses is according to the spiral algorithm). Remarkably, an IPR precursor can give rise to versatile transformed chlorinated fullerene cages formed via branched pathways. The products can be recovered either in their initial chlorinated form or as more soluble CF/F derivatives obtained by an additional trifluoromethylation workup. Reconstruction of the skeletal transformation pathways is often complicated due to the lack of the isolable intermediate products in the multistep cases. Therefore, it is usually based on the principle of selecting the shortest pathways between the starting and the final cage. The quantum-chemical calculations illustrate the detailed mechanisms of the SWR and C2L transformations and the thermodynamic driving forces behind them. A particularly important aspect is the interplay between the chlorination patterns and the regiochemistry of the skeletal transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.9b00175DOI Listing

Publication Analysis

Top Keywords

skeletal transformations
16
chlorination-promoted skeletal
8
hexagonal rings
8
fullerene cages
8
c-c bond
8
single- multistep
8
c2l transformations
8
fused pentagons
8
toc picture
8
swr c2l
8

Similar Publications

This study investigated muscle activation, shocks, and vibrations of the upper extremities during tennis serves between junior and adult tennis players. Thirty-five well-trained tennis players (15 juniors and 20 adults) performed 10 maximal successful tennis serves. Two triaxial accelerometers recorded the shock and vibration on the racket and the hand on the dominant side.

View Article and Find Full Text PDF

This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString).

View Article and Find Full Text PDF

: Achieving ideal anchorage is crucial in orthodontics for controlled tooth movement. Miniscrews (MSs) have improved skeletal anchorage, but freehand placement poses risks like root damage and limited precision. Guided techniques, including radiographic guides and computer-assisted methods (static [sCAS] and dynamic [dCAS]), were developed to enhance accuracy and safety.

View Article and Find Full Text PDF

To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary muscle fibers began forming at 40 days of gestation, fully developed by 11 weeks, and secondary muscle fibers were predominantly formed by around 105 days.

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!