When soil is frozen, biochar promotes petroleum hydrocarbon (PHC) degradation, yet we still do not understand why. To investigate microbial biodegradation activity under frozen conditions, we placed 60-μm mesh bags containing 6% (v/v) biochar created from fishmeal, bonemeal, bone chip, or wood into PHC-contaminated soil, which was then frozen to -5°C. This created three soil niches: biochar particles, the charosphere (biochar-contiguous soil), and bulk soil outside of the bags. After 90 d, C-phenanthrene mineralization reached 55% in bonemeal biochar and 84% in bone chip biochar charosphere soil, compared with only 43% in bulk soil and 13% in bone chip biochar particles. Soil pH remained near neutral in bone chip and bonemeal biochar treatments, unlike wood biochar, which increased alkalinity and likely made phosphate unavailable for microorganisms. Generally, charosphere soil had higher aromatic degradative gene abundances than bulk soil, but gene abundance was not directly linked to C-phenanthrene mineralization. In bone chip biochar-amended soils, phosphate successfully predicted microbial community composition, and abundances of and increased in charosphere soil. Biochar effects on charosphere soil were dependent on feedstock material and suggest that optimizing the charosphere in bone-derived biochars may increase remediation success in northern regions.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2018.10.0370DOI Listing

Publication Analysis

Top Keywords

bone chip
20
charosphere soil
16
soil
12
bulk soil
12
biochar
9
soil frozen
8
biochar particles
8
c-phenanthrene mineralization
8
bonemeal biochar
8
chip biochar
8

Similar Publications

From Waste to Innovation: A Circular Economy Approach for Tissue Engineering by Transforming Human Bone Waste into Novel Collagen Membranes.

Biomolecules

January 2025

Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain.

The aim of the circular economy is to treat waste as a valuable raw material, reintegrating it into the industrial economy and extending the lifecycle of subsequent products. Efforts to reduce the production of hard-to-recycle waste are becoming increasingly important to manufacturers, not only of consumer goods but also of specialized items that are difficult to manufacture, such as medical supplies, which have now become a priority for the European Union. The purpose of the study is to manufacture a novel human-purified type I collagen membrane from bone remnants typically discarded during the processing of cortico-cancellous bones in tissue banks and to evaluate its mechanical properties and effectiveness in regenerating bone-critical mandibular defects in rabbits.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.

View Article and Find Full Text PDF

Polycomb Repressive Complex 1 (PRC1) is a family of epigenetic regulators critical for mammalian development. Elucidating PRC1 composition and function across cell types and developmental stages is key to understanding the epigenetic regulation of cell fate determination. In this study, we discovered POGZ, a prominent Autism Spectrum Disorder (ASD) risk factor, as a novel component of PRC1.

View Article and Find Full Text PDF

We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!