The ubiquitin-proteasome system is a key regulator of protein degradation and a variety of other cellular processes in eukaryotes. In the brain, increases in ubiquitin-proteasome activity are critical for synaptic plasticity and memory formation and aberrant changes in this system are associated with a variety of neurological, neurodegenerative and psychiatric disorders. One of the issues in studying ubiquitin-proteasome functioning in the brain is that it is present in all cellular compartments, in which the protein targets, functional role and mechanisms of regulation can vary widely. As a result, the ability to directly compare brain ubiquitin protein targeting and proteasome catalytic activity in different subcellular compartments within the same animal is critical for fully understanding how the UPS contributes to synaptic plasticity, memory and disease. The method described here allows collection of nuclear, cytoplasmic and crude synaptic fractions from the same rodent (rat) brain, followed by simultaneous quantification of proteasome catalytic activity (indirectly, providing activity of the proteasome core only) and linkage-specific ubiquitin protein tagging. Thus, the method can be used to directly compare subcellular changes in ubiquitin-proteasome activity in different brain regions in the same animal during synaptic plasticity, memory formation and different disease states. This method can also be used to assess the subcellular distribution and function of other proteins within the same animal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/59695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!