Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols.

J Am Chem Soc

Department of Chemistry and Chemical Biology , Cornell University, Ithaca , New York 14853 , United States.

Published: June 2019

Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely, bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton transfer/electron transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b04993DOI Listing

Publication Analysis

Top Keywords

bimetallic radical
8
radical redox-relay
8
epoxides allylic
8
allylic alcohols
8
organic radicals
8
redox-relay catalysis
4
catalysis isomerization
4
isomerization epoxides
4
alcohols organic
4
radicals generally
4

Similar Publications

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF

Bicarbonate ions promote rapid degradation of pollutants in Co(II)Fe(II)/peroxyacetic acid systems.

J Hazard Mater

December 2024

School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Peroxyacetic acid (PAA), as an oxidizing agent, has gained significant attention in the field of advanced oxidation because of its low toxicity and high degradation capacity. In this study, cobalt-iron-based Prussian blue analogs (Co-PBAs) were utilized for the first time to activate PAA for tetracycline degradation. In the Co-PBAs/PAA system, organic radicals (RO•) and high-valent metal oxides are mainly produced.

View Article and Find Full Text PDF

Accelerated arsenic decontamination using graphene oxide-supported metal-organic framework nanoconfined membrane for sustainable performance.

J Colloid Interface Sci

December 2024

Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region. Electronic address:

Developing highly efficient bimetallic metal-organic frameworks (MOFs) as catalysts for Fenton-like reactions holds significant promise for decontamination processes. Although MOFs with excellent decontamination capabilities are achievable, ensuring their long-term stability, especially in the organoarsenic harmless treatment, remains a formidable challenge. Herein, we proposed a unique nanoconfinement strategy using graphene oxide (GO)-supported Prussian blue analogs (PBA) as catalytic membrane, which modulated the peroxymonosulfate (PMS) activation in p-arsanilic acid (p-ASA) degradation from traditional radical pathways to a synergy of both radical and non-radical pathways.

View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Columnar cobalt molybdate spinel rooted on three-dimensional nickel foam as robust catalyst for 4-nitrophenol degradation through peroxymonosulfate activation.

Environ Res

December 2024

Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China. Electronic address:

Metal oxides-catalyzed peroxymonosulfate (PMS) activation systems show promise in decomposing organic pollutants, whereas the critical challenges such as catalyst aggregation and metal ion leaching significantly impact the stability and reusability of catalysts and thus limit widespread application. To address these issues, an effective self-supported three-dimensional PMS activator consisted of spinel cobalt molybdate (CoMoO) and nickel foam (NF) (CoMoO/NF) is fabricated through hydrothermal and annealing processes. The cooperative redox interaction between Co and Mo metal sites in CoMoO/NF play a crucial role in efficiently activating PMS to degrade 4-nitrophenol (4-NP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!