Robust quantum state engineering through coherent localization in biased-coin quantum walks.

EPJ Quantum Technol

2Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN United Kingdom.

Published: January 2018

We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529050PMC
http://dx.doi.org/10.1140/epjqt/s40507-017-0065-9DOI Listing

Publication Analysis

Top Keywords

position states
8
states walker
8
coin parameter
8
robust quantum
4
quantum state
4
state engineering
4
engineering coherent
4
coherent localization
4
localization biased-coin
4
biased-coin quantum
4

Similar Publications

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Failure modes and interaction mechanisms of tunnel under active landslide conditions.

Sci Rep

January 2025

China Academy of Railway Sciences Co. Ltd, Beijing, 100081, China.

The construction of tunnels can easily trigger the reactivation of old landslide bodies, posing a threat to the transportation safety. In this study, using methods such as engineering geological investigation, slope deformation monitoring, deep displacement monitoring, and numerical simulation, the interaction between landslides and tunnels was investigated from the perspective of landslide deformation and failure characteristics. The Walibie Tunnel (WLBT) of Shangri-La to Lijiang (XL) expressway was taken as an example.

View Article and Find Full Text PDF

Diagnostic performance and clinical outcomes of computed tomography colonography in a sick inpatient population.

Clin Imaging

January 2025

NYU Langone Health, Department of Radiology, 660 1st Ave, New York, NY 10016, United States.

Purpose: Though prior studies have proven CTC's efficacy in outpatients, its utility in the inpatient setting has not been studied. We evaluated the efficacy of a modified CTC protocol in the inpatient setting, primarily for patients awaiting organ transplantation.

Methods: This retrospective study compared a group of inpatient CTCs from 2019 to 2021 and a randomly selected, age-matched 2:1 control group of outpatient CTCs.

View Article and Find Full Text PDF

Electrochemical pH modulator coupled with Ni-based electrode for glucose sensing.

Talanta

January 2025

Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.

The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.

View Article and Find Full Text PDF

MetAssimulo 2.0: a web app for simulating realistic 1D & 2D Metabolomic 1H NMR spectra.

Bioinformatics

January 2025

Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.

Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!