Background: The rat snake genus once comprised several dozens of species distributed in temperate through tropical zones of the New and Old World. Based on molecular-genetic analyses in early 2000s, the genus was split into several separate genera, leaving only 15 Palearctic and Oriental species as its members. One of the three species also occurring in Europe is , a robust snake from the Balkans, Anatolia, Caucasus, Ponto-Caspian steppes, and Levant that has been suspected to be composed of two or more genetically diverse populations. Here, we studied the genetic structure and morphological variation of , aiming to better understand its inter-population relationships and biogeography, and subsequently revise its taxonomy.

Methods: We reconstructed the phylogeography and analyzed the genetic structure of populations originating from most of its geographic range using both mitochondrial (, ) and nuclear (, , , ) DNA gene fragments. We employed Maximum likelihood and Bayesian inference methods for the phylogenetic tree reconstructions, supplemented with species delimitation methods, analysis of haplotype networks, and calculation of uncorrected -distances. Morphological variation in 15 metric and 18 meristic characters was studied using parametric univariate tests as well as multivariate general linearized models. In total, we analyzed sequences originating from 63 specimens and morphological data from 95 specimens of sensu lato.

Results: The molecular phylogeny identified two clearly divergent sister lineages within , with both forming a lineage sister to . The genetic distance between them (5.80-8.24% in mtDNA) is similar to the distances among several other species of the genus . Both lineages are also moderately morphologically differentiated and, while none of the characters are exclusively diagnostic, their combination can be used for confident lineage identification. Here, following the criteria of genetic and evolutionary species concepts, we describe the lineage from eastern Anatolia and parts of the Lesser and Great Caucasus as a new species sp. nov.

Discussion: sp. nov. represents a cryptic species whose ancestors presumably diverged from their common ancestor with around the Miocene-Pliocene boundary. The intraspecific genetic structure indicates that the recent diversity of both species has been predominantly shaped by Pleistocene climatic oscillations, with glacial refugia mainly located in the Balkans, Crimea, and/or Anatolia in and Anatolia and/or the Caucasus in sp. nov.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544014PMC
http://dx.doi.org/10.7717/peerj.6944DOI Listing

Publication Analysis

Top Keywords

genetic structure
12
species
10
rat snake
8
morphological variation
8
genetic
5
biogeography pallas
4
pallas 1814
4
1814 description
4
description rat
4
snake species
4

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!