Background: Sudden cardiac death (SCD) risk stratification in dilated cardiomyopathy (DCM) has been based on left ventricular ejection fraction (LVEF), even though SCD may occur with LVEF > 35%. Family history of unexplained SCD, especially in the young, raises concern about potential inheritable risk factors. It remains largely unknown how genetic tests can be integrated into clinical practice, particularly in the selection of implantable cardioverter defibrillator (ICD) candidates. We aimed to assess the diagnostic yield of genetic testing in DCM patients with a class I recommendation for ICD implantation, based on current guidelines.
Methods: We included ambulatory stable adult patients with idiopathic or familial DCM with previously implanted ICD. Molecular analysis included 15 genes (, , , , , , , , , , , , , , and ) using next-generation sequencing.
Results: We evaluated 21 patients, 12 (57%) males and 9 (43%) with familial DCM, including 3 (14%) with a family history of premature unexplained SCD. Mean age at DCM diagnosis was 40 ± 2 years, and mean age at ICD implantation was 50 ± 12 years. LVEF was 27 ± 9%, and LV end-diastolic diameter was 65 ± 7 mm. Genetic variants were found in six (29%) patients, occurring in 5 genes: , , , , and . The majority were classified as variants of uncertain significance. Family history of SCD was present in both patients with variants.
Conclusion: In patients with DCM and ICD, genetic variants could be identified in a significant proportion of patients in several genes, highlighting the potential role of genetics in DCM SCD risk stratification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507268 | PMC |
http://dx.doi.org/10.1155/2019/2743650 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, ASST Cremona, Italy.
Objective: Brainstem cavernous malformations (BSCMs) were once considered inoperable. Microsurgical resection now represents a valuable option for treating patients with hemorrhagic or symptomatic lesions. The aim of this study was to provide a practical guide for surgical planning by analyzing postoperative neurological and functional outcomes.
View Article and Find Full Text PDFKidney360
January 2025
Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
Background: Epidemiological associations between kidney stone disease (KSD) and gastrointestinal disorders have been reported, and intestinal homeostasis plays a critical role in stone formation. However, the underlying intrinsic link is not adequately understood. This study aims to investigate the genetic associations between these two types of diseases.
View Article and Find Full Text PDFPLoS One
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.
Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data.
View Article and Find Full Text PDFPLoS One
January 2025
Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba.
SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.
View Article and Find Full Text PDFPLoS One
January 2025
BioMarin Pharmaceutical Inc., Novato, CA, United States of America.
The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!