Polyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism. With respect to the pathogen, PAs are required to achieve successful pathogenesis of the host. Maize is an important food and feed crop, which is highly susceptible to infection. Upon infection, the fungus produces carcinogenic aflatoxins and numerous other toxic secondary metabolites that adversely affect human health and crop value worldwide. To evaluate the role of PAs in aflatoxin resistance in maize, kernel infection assays were performed using maize lines that are susceptible (SC212) or resistant (TZAR102, MI82) to aflatoxin production. Results indicated significant induction of both PA biosynthetic and catabolic genes upon infection. As compared to the susceptible line, the resistant maize lines showed higher basal expression of PA metabolism genes in mock-inoculated kernels that increased upon fungal infection. In general, increased biosynthesis and conversion of Put to Spd and Spm along with their increased catabolism was evident in the resistant lines vs. the susceptible line SC212. There were higher concentrations of amino acids such as glutamate (Glu), glutamine (Gln) and γ-aminobutyric acid (GABA) in SC212. The resistant lines were significantly lower in fungal load and aflatoxin production as compared to the susceptible line. The data presented here demonstrate an important role of PA metabolism in the resistance of maize to colonization and aflatoxin contamination. These results provide future direction for the manipulation of PA metabolism in susceptible maize genotypes to improve aflatoxin resistance and overall stress tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543017 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00692 | DOI Listing |
Food Chem
December 2024
Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:
Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.
View Article and Find Full Text PDFFood Chem
December 2024
Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:
Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA.
Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
Aflatoxin B is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.
View Article and Find Full Text PDFToxins (Basel)
November 2024
CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
Aflatoxins constitute a significant risk in staple foods produced in African countries. This research aimed to analyze the total aflatoxin (AFT) contamination of various staple foods in Angola and Mozambique. A total of 233 samples of corn, peanuts, beans, rice, and cassava flour collected from farmers or local markets from the province of Cuanza Sul, Angola, and the provinces of Gaza and Inhambane, South Mozambique, were analyzed for the presence of AFT using the lateral flow strip method via AgraStrip Pro WATEX (Romer).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!