The coupled multicomponent diffusion of the species CaSiO, CaAlSiO and MgSiO was determined in diopside crystals in the diopside/anorthite (Di/An) system at temperatures () of 1110-1260 °C and oxygen fugacities ( ) between 1.0 log unit below and above the fayalite-magnetite-quartz equilibrium (FMQ ± 1). Diffusion couples were prepared by the seed overgrowth technique. Element concentration profiles were measured perpendicular to the rim/core interface by step-scanning profiling with a field emission gun scanning electron microscope (FEG-SEM). The multicomponent diffusion matrix was solved by fitting its eigenvalues () and eigenvectors () to the measured concentration profiles. The full diffusion matrix D can be recovered by using the formula resulting in the following equation: The eigenvalues ( and ) represent upper limit values and are described by the following Arrhenius-type equations: where 1 and 2 are the first and second eigenvalue of the diffusion matrix in m s is the gas constant and is the temperature in . The dominant eigenvalue () is one quarter order of magnitude larger than the second eigenvalue (2). The eigenvectors are constant for all experiments inferring that the entire D matrix can be described with the eigenvalues as the only -dependent parameter. Additionally, the derived diffusion data and modeling approach were applied to constrain the duration of magmatic processes recorded in zoned clinopyroxene (cpx) phenocrysts from a basaltic, post-plutonic dyke of the Tertiary Adamello batholiths (N-Italy). The results reveal residence times of the overgrown cpx prior to final emplacement in the range of 0.25-1.7 years (lower limit values) testifying that the data and method can be applied to model cpx diffusion profiles in complex natural cpx.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515693 | PMC |
http://dx.doi.org/10.1007/s00410-019-1571-9 | DOI Listing |
Adv Sci (Weinh)
January 2025
Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.
Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
Self-diffusion coefficients, *, are routinely estimated from molecular dynamics simulations by fitting a linear model to the observed mean squared displacements (MSDs) of mobile species. MSDs derived from simulations exhibit statistical noise that causes uncertainty in the resulting estimate of *. An optimal scheme for estimating * minimizes this uncertainty, i.
View Article and Find Full Text PDFSci Rep
January 2025
School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.
N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!