Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Morphological diversity is dominated by variation in body proportion [1], which can be described with scaling relationships and mathematical equations, following the pioneering work of D'Arcy Thompson [2] and Julian Huxley [3]. Yet, the cellular processes underlying divergence in size and shape of morphological traits between species remain largely unknown [4-8]. Here, we compare the ovipositors of two related species, Drosophila melanogaster and D. suzukii. D. suzukii has switched its egg-laying niche from rotting to ripe fruit [9]. Along with this shift, the D. suzukii ovipositor has undergone a significant change in size and shape [10]. Using an allometric approach, we find that, while adult ovipositor width has hardly changed between the species, D. suzukii ovipositor length is almost double that of D. melanogaster. We show that this difference mostly arises in a 6-h time window during pupal development. We observe that the developing ovipositors of the two species comprise an almost identical number of cells, with a similar profile of cell shapes and orientations. After cell division stops, we find that the ovipositor area continues to grow in both species through the isotropic expansion of cell apical area and the anisotropic cellular reorganization of the tissue. Remarkably, we find that the lengthening of the D. suzukii ovipositor compared to that of D. melanogaster results from the combination of the accelerated expansion of apical cell size and the enhanced anisotropic rearrangement of cells in the tissue. Therefore, the quantitative fine-tuning of morphogenetic processes can drive evolutionary changes in organ size and shape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584362 | PMC |
http://dx.doi.org/10.1016/j.cub.2019.05.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!