Tools for Bioimaging Pancreatic β Cells in Diabetes.

Trends Mol Med

Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore. Electronic address:

Published: August 2019

When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmed.2019.05.004DOI Listing

Publication Analysis

Top Keywords

tools bioimaging
8
pancreatic cells
8
cell imaging
8
diabetes
5
bioimaging pancreatic
4
cells
4
cells diabetes
4
diabetes diabetes
4
diabetes diagnosed
4
diagnosed majority
4

Similar Publications

Biomolecule-stabilized gold nanoclusters (AuNCs) have become functional nanomaterials of interest because of their unique optical properties, together with excellent biocompatibility and stability under biological conditions. In this review, we explore the recent advancements in the application of biomolecular ligands for synthesizing AuNCs. Various synthesis approaches that are employing amino acids, peptides, proteins, and DNA as biomolecular scaffolds are reviewed.

View Article and Find Full Text PDF

Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.

A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.

View Article and Find Full Text PDF

Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment.

Nanoscale

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.

View Article and Find Full Text PDF

Cell density quantification of high resolution Nissl images of the juvenile rat brain.

Front Neuroanat

December 2024

Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Nissl histology underpins our understanding of brain anatomy and architecture. Despite its importance, no high-resolution datasets are currently available in the literature for 14-day-old rats. To remedy this issue and demonstrate the utility of such a dataset, we have acquired over 2000 high-resolution images (0.

View Article and Find Full Text PDF

Introduction: Antimicrobial-resistant pathogens are an ongoing threat to human and animal health. According to the World Health Organization (WHO), colistin is considered the last resort antibiotic against human infections due to multidrug-resistant Gram-negative organisms-including , a priority-1 pathogen. Despite colistin being considered a last resort antibiotic, transferable bacterial resistance to this drug has been reported in humans and animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!