It is generally accepted that intracellular killing of microorganisms by production of reactive oxygen species (ROS) in the phagosome of the neutrophil is an important arm of innate defense. High-producing dairy cows are prone to periparturient metabolic and infectious diseases. Both myeloperoxidase (MPO) activity and ROS production decrease the day of parturition. Several studies have demonstrated changes in the expression of genes involved in, for example, metabolism and defense in the circulating neutrophil during peripartum. In this study, we wanted to further characterize the periparturient neutrophil in terms of its oxidative killing capacity by analyzing the oxidative burst at 3 levels. First, the ROS phenotype was evaluated using chemiluminescence. The cows (sampled within 24 h after parturition and at 135 d in milk) showed a significantly slower production of ROS at parturition. Both primiparous (n = 13) and multiparous (n = 12) cows were included in this study, but parity did not affect the kinetics of ROS production. Second, the expression of 11 genes involved in ROS production was measured in the same cows: cytochrome b-245 α and β chain (CYBA, CYBB; coding for membrane-bound constituents of NADPH oxidase); neutrophil cytosolic factors 1, 2, and 4 (NCF1, NCF2, and NCF4); Rac family small GTPase 1 and 2 (RAC1 and RAC2; coding for regulatory proteins of NADPH oxidase); superoxide dismutase 2 (SOD2); catalase (CAT); myeloperoxidase (MPO; coding for enzymes involved in metabolizing downstream ROS); and spleen-associated tyrosine kinase (SYK; involved in signaling). During peripartum, a shift in expression in the oxidative killing pathway was observed, characterized by a downregulation of MPO and a simultaneous upregulation of the genes coding for NADPH oxidase. Third, as total DNA methylation is known to change during pregnancy, we investigated whether the observed differences were due to different methylation patterns. Promotor regions initiate transcription of particular genes; therefore, we analyzed the methylation status in annotated CpG islands of MPO and SOD2, 2 genes with a significant difference in expression between both lactation stages. The differences in methylation of these CpG islands were nonsignificant. High-throughput techniques may be necessary to obtain more detailed information on the total DNA methylation dynamics in bovine neutrophils and increase our understanding of how gene expression is controlled in neutrophils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-16027 | DOI Listing |
Clin Transl Med
January 2025
BOE Technology Group Co., Ltd, Beijing, China.
Background: Multi-omics features of cell-free DNA (cfDNA) can effectively improve the performance of non-invasive early diagnosis and prognosis of cancer. However, multimodal characterization of cfDNA remains technically challenging.
Methods: We developed a comprehensive multi-omics solution (COMOS) to specifically obtain an extensive fragmentomics landscape, presented by breakpoint characteristics of nucleosomes, CpG islands, DNase clusters and enhancers, besides typical methylation, copy number alteration of cfDNA.
Nat Commun
January 2025
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.
View Article and Find Full Text PDFClin Epigenetics
January 2025
ISGlobal, Barcelona, Spain.
Background/objective: There is limited knowledge on how diet affects the epigenome of children. Ultra-processed food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncovered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Medical Biology-Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece.
This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
Background/objectives: A-kinase-interacting protein 1 (AKIP1) has been discovered to be a pivotal signaling adaptor in the regulation of human labor and associated with preterm birth, but its effect on fetal growth was still unclear. Meanwhile, the regulation role of DNA methylation (DNAm) on placental and fetal development has been demonstrated. Therefore, we aimed to investigate the association of DNAm in maternal peripheral blood with placental development and full-term small for gestational age (FT-SGA) neonates, and to explore whether placenta mediate the association between DNAm and FT-SGA; Methods: This study was a case-control study including 84 FT-SGAs and 84 FT-AGAs derived from the Shenzhen Birth Cohort Study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!