Ultraviolet light has intriguing potential as a marine antifoulant, targeting almost any species and applicable to almost any surface, while not accumulating in the environment. This study field-tested the effects of periodic ultraviolet-C illumination on marine macrofouling. Across four experiments, several UV illumination duty cycles were tested against controls with no illumination. Duty cycles between 1:2 (time with UV:total time per cycle) and 1:20 were all similarly effective, inhibiting almost all macrofouling at three different temperate Northeast Pacific and Northwest Atlantic sites. Susceptible taxa included barnacles, bryozoans, tunicates (colonial and solitary), and, to a slightly lesser extent, mussels. Duty cycles of 1:30 and 1:60 reduced but did not eliminate biofouling. Measurements of ultraviolet illumination on oceanographic sensors showed similar results. The results suggest further investigation of ultraviolet light as an antifoulant for marine sensors, including susceptibility of other taxa, optimizing illumination patterns, and exploring the potential for evolved resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2019.1616698DOI Listing

Publication Analysis

Top Keywords

duty cycles
12
periodic ultraviolet-c
8
ultraviolet-c illumination
8
illumination marine
8
ultraviolet light
8
illumination duty
8
illumination
6
marine
4
marine sensor
4
sensor antifouling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!