Background/aims: Fecal incontinence (FI) is a prevalent condition among women. While biomechanical motor components have been thoroughly researched, anorectal sensory aspects are less known. We studied the pathophysiology of FI in community-dwelling women, specifically, the conduction through efferent/afferent neural pathways.
Methods: A cross-sectional study was conducted on 175 women with FI and 19 healthy volunteers. The functional/structural study included anorectal manometry/endoanal ultrasound. Neurophysiological studies including pudendal nerve terminal motor latency (PNTML) and sensory-evoked-potentials to anal/rectal stimulation (ASEP/RSEP) were conducted on all healthy volunteers and on 2 subgroups of 42 and 38 patients, respectively.
Results: The main conditions associated with FI were childbirth (79.00%) and coloproctological surgery (37.10%). Cleveland score was 11.39 ± 4.09. Anorectal manometry showed external anal sphincter and internal anal sphincter insufficiency in 82.85% and 44.00%, respectively. Sensitivity to rectal distension was impaired in 27.42%. Endoanal ultrasound showed tears in external anal sphincter (60.57%) and internal anal sphincter disruptions (34.80%). Abnormal anorectal sensory conduction was evidenced through ASEP and RSEP in 63.16% and 50.00% of patients, respectively, alongside reduced activation of brain cortex to anorectal stimulation. In contrast, PNTML was delayed in only 33.30%. Stools were loose/very loose in 56.70% of patients.
Conclusions: Pathophysiology of FI in women is mainly associated with mechanical sphincter dysfunctions related to either muscle damage or, to a lesser extent, impaired efferent conduction at pudendal nerves. Impaired conduction through afferent anorectal pathways is also very prevalent in women with FI and may play an important role as a pathophysiological factor and as a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657934 | PMC |
http://dx.doi.org/10.5056/jnm18196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!