Aims/hypothesis: This study aimed to examine changes in the insulin secretory response in early pregnancy, while accounting for changes in insulin sensitivity.
Methods: This is a secondary analysis of a previously conducted longitudinal physiological study. In 34 women, insulin secretory response (by IVGTT) and insulin sensitivity (by euglycaemic clamp) were assessed prior to pregnancy, in early pregnancy (12-14 weeks gestation) and in late pregnancy (34-36 weeks gestation). Using mixed-effects models, we compared insulin secretory response and sensitivity in early pregnancy to the same variables prior to pregnancy and in late pregnancy, with adjustment for age, obesity status and gestational diabetes mellitus (GDM). We examined changes in insulin secretory response after adjustment for insulin sensitivity using both multivariate modelling and the disposition index (DI). We explored the relationship between insulin secretory response and circulating hormones.
Results: The insulin secretory response increased from prior to pregnancy to early pregnancy (unadjusted mean [SD] first-phase insulin response 465.1 [268.5] to 720 [358.2], p < 0.0001) and from early pregnancy to late pregnancy (to 924 [494.6], p = 0.01). Insulin sensitivity increased from prior to pregnancy to early pregnancy (insulin sensitivity index 0.10 [0.04] to 0.12 [0.05], p = 0.001) and decreased in late pregnancy (to 0.06 [0.03], p < 0.0001). Accounting for changes in insulin sensitivity, using either multivariate modelling or the DI, did not attenuate the early-pregnancy augmentation of insulin secretory response. Leptin was positively associated with insulin secretory response, independent of insulin sensitivity and adiposity (p = 0.004). Adjustment for leptin attenuated the observed augmentation of insulin secretory response in early pregnancy (adjusted mean change 121.5, p = 0.13).
Conclusions/interpretation: The insulin secretory response increases markedly in early pregnancy, prior to and independent of changes in insulin sensitivity. Circulating hormones may mediate this metabolic adaptation. Identifying mediators of this physiological effect could have therapeutic implications for treating hyperglycaemia during and outside of pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786902 | PMC |
http://dx.doi.org/10.1007/s00125-019-4881-6 | DOI Listing |
Molecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFBiomolecules
November 2024
Centre for Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects of these proglucagon-derived peptides on pancreatic beta-cell function, as well as on glucose tolerance and appetite.
View Article and Find Full Text PDFHuman endocrine cell differentiation and islet morphogenesis play critical roles in determining islet cell mass and function, but the events and timeline of these processes are incompletely defined. To better understand early human islet cell development and maturation, we collected 115 pediatric pancreata and mapped morphological and spatiotemporal changes from birth through the first ten years of life. Using quantitative analyses and a combination of complementary tissue imaging approaches, including confocal microscopy and whole-slide imaging, we developed an integrated model for endocrine cell formation and islet architecture, including endocrine cell type heterogeneity and abundance, endocrine cell proliferation, and islet vascularization and innervation.
View Article and Find Full Text PDFObesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes.
View Article and Find Full Text PDFUnlabelled: All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!