A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes.

J Environ Manage

Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. Electronic address:

Published: September 2019

The prevalence of organic micropollutants (OMPs) in various environmental compartments is posing a serious health risks to all kinds of lives on the planet. The levels of OMPs such as polyaromatic hydrocarbons, antibiotics, pesticides, contraceptive medicines, and personal care products in water bodies are increasing with each passing day. It is an urgent need of time to limit the release of OMPs into the environment, and to remove the prevailing OMPs for sustainable environmental management. The majority of the conventional means of water decontamination are either inefficient or expensive. However, due to nanosize, high surface area, and hollow and layered structure, carbon nanotubes (CNTs) serve as excellent sorbents for the removal of a diverse range of OMPs. The occurrence of emerging OMPs and their detrimental effects on human and animal health are collected and discussed in this review. The characteristics and efficacy of various CNTs (pristine and modified) for the efficient removal of different OMPs, and the removal mechanisms have been reviewed and discussed. The literature demonstrated that adsorption of OMPs onto CNTs is very complicated and rely on multiple factors including the properties of adsorbent and the adsorbate as well as solution chemistry. It was found that H-bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, H-π bongs, and π-π interactions were the major mechanisms responsible for the adsorption of OMPs onto various kinds of CNTs. Despite of higher affinities for OMPs, hydrophobicity and higher costs restrain the practical application of CNTs for wastewater treatment on large scale. However, continuous production may lead to the development of cost-effective, efficient and eco-friendly CTNs technology for wastewater treatments in future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.05.152DOI Listing

Publication Analysis

Top Keywords

omps
10
organic micropollutants
8
carbon nanotubes
8
adsorption omps
8
cnts
5
critical review
4
review organic
4
micropollutants contamination
4
contamination wastewater
4
removal
4

Similar Publications

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

In silico prediction and experimental evaluation of LIP3228 of pathogenic Leptospira as a potential subunit vaccine target against leptospirosis.

Biochem Biophys Res Commun

December 2024

Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand. Electronic address:

A protein subunit vaccine comprising conserved surface-exposed outer membrane proteins (SE-OMPs) is considered a promising platform for leptospirosis vaccine. The search for novel vaccine candidates that confer high protective efficacy against leptospirosis is ongoing. The LIP3228 protein was previously identified as a conserved and abundant SE-OMP with the potential to serve as an effective vaccine candidate.

View Article and Find Full Text PDF

Introduction: Strains of the syphilis spirochete, ssp. , group into one of two deep-branching clades: the Nichols clade or the globally dominant Street Strain 14 (SS14) clade. To date, in-depth proteome-wide analyses have focused on Nichols clade strains.

View Article and Find Full Text PDF

We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.

View Article and Find Full Text PDF

This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!