A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters.

J Environ Manage

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:

Published: September 2019

In this paper, hollow gangue microspheres (GM) were introduced into a geopolymer matrix through a geopolymeric method; our aim was to synthesize a green and low-cost adsorbent (GM/KGP) for the removal of heavy metal ions (Cu, Cd, Zn, and Pb) from aqueous solutions. We investigated the microstructure of the GM/KGP adsorbent, as well as the effects of adsorbent dose, time, and temperature on adsorption behavior; moreover, an adsorption mechanism was proposed. The GM/KGP adsorbent possessed a typical broad amorphous structure and abundant O-containing functional groups on its surface. The adsorption of Cu, Cd, Zn, and Pb onto the GM/KGP adsorbent fitted well to the pseudo-second-order kinetic model, while the equilibrium isotherm adsorption data were fitted well to the Langmuir equation. The adsorption mechanism GM/KGP was attributed to physical, chemical, and electrostatic attractions, as well as to ion exchange. We conclude that this novel adsorbent has great potential in removing heavy metal ions from contaminated wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.05.120DOI Listing

Publication Analysis

Top Keywords

gm/kgp adsorbent
12
green low-cost
8
hollow gangue
8
removal heavy
8
heavy metal
8
metal ions
8
adsorption mechanism
8
fitted well
8
adsorbent
7
gm/kgp
5

Similar Publications

A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters.

J Environ Manage

September 2019

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:

In this paper, hollow gangue microspheres (GM) were introduced into a geopolymer matrix through a geopolymeric method; our aim was to synthesize a green and low-cost adsorbent (GM/KGP) for the removal of heavy metal ions (Cu, Cd, Zn, and Pb) from aqueous solutions. We investigated the microstructure of the GM/KGP adsorbent, as well as the effects of adsorbent dose, time, and temperature on adsorption behavior; moreover, an adsorption mechanism was proposed. The GM/KGP adsorbent possessed a typical broad amorphous structure and abundant O-containing functional groups on its surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!